
' IDA

<^>

July 1995
Approved for public release;

distribution unlimited.

IDA Paper P-3144

Log: H 96-003231

INSTITUTE FOR DEFENSE ANALYSES

Legacy System Wrapping for
Department of Defense

Information System Modernization

Kathleen A. Jordan, Task Leader

Brian A. Haugh
Asghar I. Noor

D. Douglas Smith

«Sji&lU Q'QA'I V'7n: r.v. -: .„,.._,.„■

This work was conducted under contract DASW01 94 C 0054, Task
T-S5-1266, for the Defense Information Systems Agency. The
publication of this IDA document does not indicate endorsement by the
Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

©1995,1996,1997 Institute for Defense Analyses, 1801 N.Beauregard
Street, Alexandria, Virginia 22311-1772 • (703)845-2000.

This material may be reproduced by or for the U.S. Government pursuant
to the copyright license under the clause at DFARS 252.227-7013
(10/88).

NSTITUTE FOR DEFENSE ANALYSES

Legacy System Wrapping for
Department of Defense

Information System Modernization

Kathleen A. Jordan, Task Leader

Brian A. Haugh
Asghar I. Noor

D. Douglas Smith

PREFACE

This document was prepared by the Institute for Defense Analyses (IDA) under the
task order, Object-Oriented Technology Implementation in the Department of Defense

(DoD), in response to a task objective to develop strategies for the implementation of

object-oriented technology (OOT) within specific information technology areas within the

DoD. This document is one of a set of four reports on OOT implementation. The other

reports, focusing on other areas of OOT, are IDA Paper P-3142, Object-Oriented Develop-

ment Process for Department of Defense Information Systems; IDA P-3143, Object-Orient-

ed Programming Strategies for Ada; and IDA Paper P-3145, Software Reengineering Using

Object-Oriented Technology. All of this work was sponsored by the Defense Information
Systems Agency.

The following IDA research staff members were reviewers of this document: Dr.
Edward A. Feustel, Dr. Richard J. Ivanetich, Dr. Reginald N. Meeson, Dr. Judy Popelas,
Mr. Clyde G. Roby, and Mr. Glen R. White.

m

Table of Contents

EXECUTIVE SUMMARY ES.

1. INTRODUCTION

1.1 PURPOSE AND SCOPE
1.2 BACKGROUND

1.3 ORGANIZATION OF DOCUMENT

2. WRAPPING CONCEPTS 3

2.1 WRAPPING SOFTWARE COMPONENTS AS INDIVIDUAL OBJECTS 3
2.2 WRAPPING SOFTWARE WITH OBJECT MODELS 3
2.3 EXAMPLE OF OBJECT MODEL WRAPPING 5

2.4 ADVANTAGES AND DRAWBACKS OF WRAPPING 7
2.4.1 General Advantages of Wrapping 7
2.4.2 Object Model Wrapper Advantages 9
2.4.3 Direct Wrapping Drawbacks 10
2.4.4 General Drawbacks of Wrapping \\

2.5 WRAPPING CRITERIA _ 12

3. SYSTEM MIGRATION STRATEGIES 15

3.1 DIVJDE-AND-CONQUER 15

3.2 DIVJDE-AND-WRAP 16

3.3 UNITE-AND-CONQUER 19

3.4 ONE-SHOT REBUILD 21

4. WRAPPER CONTENTS 23

4.1 WRAPPING FUNCTIONS OR PROCEDURES 1 23
4.2 WRAPPING DATABASE FILES 25
4.3 WRAPPING DATABASE TABLES 26

4.4 WRAPPING A DATABASE MANAGEMENT SYSTEM 28

4.5 ALTERNATIVE DATABASE ENCAPSULATION MODELS 29
4.6 WRAPPING PROGRAMS 30

4.7 WRAPPING SUBSYSTEMS 33

5. ALTERNATIVE ENCAPSULATION TECHNIQUES 35

5.1 GATEWAYS 35

5.2 DATABASE VIEWS 37

6. WRAPPING IMPLEMENTATION 39

6.1 LEGACY ENVIRONMENT CONSTRAINTS 40
6.2 WRAPPING PRELIMINARIES 42

6.3 FUNCTION WRAPPING IN ADA 45
6.3.1 Example 1: "Employee_Taxable" 47
6.3.2 Example 2: "Payroll" ZZ49
6.3.3 Example 3: "Math_Library" 50

6.4 EXAMPLE SCENARIO 52
6.4.1 Legacy Program Scenario 52
6.4.2 Migration Program Scenario 53
6.4.3 Object Model Scenario 53
6.4.4 Wrapping a Data File Scenario 53

6.5 INTERFACING TO EXTERNAL CODE 56
6.5.1 Operating System Interface 56
6.5.2 Common Storage Areas Interface 60
6.5.3 Intermediate Language Interface 62

6.6 WRAPPING A DATABASE MANAGEMENT SYSTEM 65
6.6.1 SQL to Ada Binding 66
6.6.2 All-Ada Bindings 67
6.6.3 Embedded SQL ZZZZZZZ! 69
6.6.4 SQL Ada Module Description Language 72

6.7 ADA 95 INTERFACE TO OTHER PROGRAMMING LANGUAGES 73
6.7.1 Interfacing Pragmas 74
6.7.2 The Package "Interfaces" ZZZZIZ 75
6.7.3 Interfacing with Cobol 76

7. SUMMARY OF GUIDELINES AND ISSUES 81

7.1 GUIDELINES FOR OO WRAPPING 81
7.2 LEGACY WRAPPING ISSUES 82

APPENDIX A. EXAMPLES OF OO PROGRAMMING CODE A-l

LIST OF REFERENCES References-1

GLOSSARY Glossary-1

LIST OF ACRONYMS Acronyms-1

VI

List of Figures

Figure ES-1. Legacy Software Wrapped as an Object ES-2

Figure ES-2. Legacy Software Wrapped with Object Model ES-3

Figure 1. Legacy Software Wrapped as an Object 4

Figure 2. Legacy Software Wrapped with Object Model 4

Figure 3. Example of System Wrapping for a Geometric Modeling System 6

Figure 4. Wrapping Supports Translation to Standard Data Element Formats 8

Figure 5. Divide-and-Conquer With Some Wrapping „ 16

Figure 6. Divide-and-Wrap Migration Strategy 17

Figure 7. Unite-and-Conquer Strategy 20

Figure 8. Wrapping Program Functions 24

Figure 9. Wrapping Data Files 26

Figure 10. Wrapping Database Tables 27

Figure 11. Wrapping Database Tables as Domain Object Classes 27

Figure 12. Wrapping Database Tables with a Domain Model 28

Figure 13. Wrapping a Whole DBMS 29

Figure 14. Wrapping Programs as Objects 31

Figure 15. Wrapping Programs with Object Models 32

Figure 16. Wrapping Program and Data Stores as an Object 33

Figure 17. Wrapping Entire Subsystems 34

Figure 18. Gateway Types and Placements 36

Figure 19. Calling a Wrapped Procedure/Function/Subprogram 46

Figure 20. Function Wrapping Example in Ada 48

Figure 21. Wrapping of Scenario Legacy System 52

Figure 22. Object Model # 54

Figure 23. Interaction Diagram 55

Figure 24. Linking via a Unix Shell 57

Figure 25. Interfacing Using a Common Area 60

Figure 26. Interfacing via an Intermediate Language 62

Figure 27. The Meaning of SAMeDL Text 72

Vll

List of Tables

Table 1. Examples of Legacy Environments 40

Table 2. Wrapping Guidelines 45

IX

EXECUTIVE SUMMARY

Many of the current software engineering activities in the Department of Defense

(DoD) center on migrating from obsolete legacy software systems to modernized migration
systems. Legacy information systems incorporate obsolete technology such as closed systems,
"stovepipe" design, and outmoded programming languages or database systems. Modernized

migration systems are those systems, already in existence or being planned, that utilize or
intend to utilize contemporary best practices in design and implementation. To date, transition-
ing a legacy system to a migration system has proven to be difficult.

Object-oriented technology (OOT) may be counted among the best practices for soft-
ware development by virtue of its efficiencies in development and maintenance and its inherent
support for reuse. OOT consists of a set of methodologies and tools for developing and main-
taining software systems using software objects composed of encapsulated data and operations
as the central paradigm. Software wrapping is a technique in which an interface is created
around an existing piece of software, providing a new view of the software to external systems,
objects, or users. Wrapping can be accomplished at multiple levels: around data, individual
modules, subsystems, or entire systems.

This document describes the potential benefits, problems, and issues in using the OO
technique of software wrapping in DoD information systems. It also describes the essential
activities in OO wrapping, from determining the suitability of wrapping applications to imple-
menting wrappers of legacy code or data using the Ada programming language.

Wrapping Basics

The narrow concept of a wrapped object is illustrated in Figure ES-1 on page ES-2,
where the method icons surrounding the legacy software represent its encapsulation as a single
object, accessible only through the object-defined methods (or operations). Any user access to
the legacy software would be mediated through some of these methods, whether the user inter-
face is a complex set of objects constituting a graphical user interface (GUI) or simple terminal
line command input/output (I/O).

ES-1

User Input Monitor Display

Other Wrapped
Objects Other System

Objects

Key

III Leqacv Software

^| j^ Method/Operation

(■■■■

} Object/Class

*~ I/O Link

Figure ES-1. Legacy Software Wrapped as an Object

The broader conception of an 00 wrapper is illustrated in Figure ES-2 on page ES-3,
where an object model of multiple classes and objects is created as part of the wrapper to pro-
vide a natural OO interface to the principal conceptual entities implicit in the original system.
The new objects and classes of such a wrapper can interface with the legacy programs and data

in different ways. An application programming interface (API) may mediate communication
between the wrapper object model and the legacy program, as illustrated in Figure ES-2. When
the legacy software is a database, a database server might provide the functionality of an API,
with objects accessing the database through SQL calls to the server.

System Migration Strategies

Wrapping fits into the following broader strategies for entire system migrations: divide-
and-conquer, divide-and-wrap, unite-and-conquer, and one-shot rebuild.

Divide-and-conquer. This strategy proceeds incrementally, dividing legacy subsystems
and applications into those selected for immediate conversion to OO technology and those that
are not. The most suitable candidates are converted and integrated with the existing systems,
and the process is repeated until either the entire system or all suitable parts of it are converted
to 00 form. This supports a staged transition, ordinarily more manageable, and involves lower
risk than attempting to convert an entire system at once. Wrapping could participate in this

ES-2

Application Programming Interface

Legacy Software

i . i

}

}

other
system
objects/classes

wrapper
object
model

J

Key

Legacy Software

m Domain
W Class/Object

 Object link

Figure ES-2. Legacy Software Wrapped with Object Model
strategy by providing temporary modernization of some system components to ease their inte-
gration with fully converted components. Leaving some system components untouched, how-
ever, can leave some integration difficulties, and a mixture of traditional and OO system
components could be awkward to support throughout the duration of incremental moderniza-
tion. This is a potential drawback to any divide-and-conquer scheme, whether or not wrapping
is involved. However, wrapping can help alleviate this problem, as demonstrated by the next
general strategy, which we call "divide-and-wrap."

Divide-and-wrap. Wrapping can be used quite broadly to effect a complete conversion
of the legacy system to OOT in a single step by wrapping everything that is not fully reengi-
neered. Wrapped components could then be incrementally reengineered, as feasible, using OO
techniques. This strategy eases integration of all the pieces at different stages of transition since
the methods interfacing wrapped objects can perform any necessary translations between leg-
acy and modernized components. It offers flexibility in scheduling the transition increments
through variations in both the amount of reengineering and the granularity of the components
wrapped. In some cases, whole subsystems may be wrapped for a lower-cost transition stage,
while wrapping may be executed at a finer level during transition stages when more time and
staff resources are available. The principal drawback to this general transition strategy is that

ES-3

wrapping large portions of a system may require considerable rework (of object hierarchies,
methods, and data structures) when these components are unwrapped and decomposed into
more meaningful objects.

Unite-and-conquer. This strategy achieves a unification of system applications and
databases through a common OO framework that organizes access to legacy code and data as
well as to new and reengineered OO system components. Such a framework can be constructed
as part of developing business or enterprise models of the business activities supported by the
legacy information system. However, developing business models can be a time-consuming

analysis task for large systems since the essential business objects must be identified and

mapped to the relevant existing programs and/or databases. Thus, a unite-and-conquer strategy

can only be effectively executed at a migration stage when sufficient resources are available

for this extensive analysis. When the resources are available, the payoff can be considerable in
later stages of migration.

One-shot rebuild. Multiple experiences in building large OO systems indicate that, for
OO systems in particular, incremental development is more effective than the classic waterfall
development model. While a one-shot waterfall development has never been recommended for
OO systems, it can be feasible in smaller automated information systems to apply locally incre-
mental development to the system as a whole. One-shot rebuild could also be viable for a large
legacy systems if it is very similar to an existing OO system that has already been implemented,
or if it can be constructed out of existing tested frameworks and repository objects.

Issues and Findings

What are the different methods of software wrapping and which are preferable? When
the resources are available, domain object models composed of multiple related domain objects
are preferable for wrapping legacy components rather than simply wrapping each component
as an isolated object. Such object model wrapping provides a better foundation for any subse-

quent legacy modernization or extensions. The costs of object model wrapping can be mini-
mized by judicious abstraction of the domain object classes, modeling only those features
essential to wrapping.

What criteria should be used in selecting legacy software components for wrapping?

Election of a wrapping strategy and selection of components for wrapping require good reasons
to wrap rather than to reengineer and a determination of feasibility of wrapping. These reasons
include the need for rapid modernization in the absence of sufficient time or staffing resources
for reengineering. Another set of reasons consists of various barriers to effective reengineering,

ES-4

such as the absence of documentation or available domain experts, and the complexity or great

volume of legacy code. The feasibility of wrapping depends on various features of the legacy

system and target system environments, being improved by modularity in legacy code, and

ready support for interfaces between legacy components and the target 00 environment. Under
such a favorable environment, software wrapping can provide the most effective means of
meeting modernization deadlines.

What overall system migration strategies are least risky and how might they incorpo-

rate wrapping? The "one-shot rebuild" strategy is widely considered risky for large systems

because it attempts too much reengineering in a single step. In contrast, the "unite-and-con-

quer" strategy is considered superior and is recommended because it uses a unifying object

model of the system domain to wrap legacy components, supporting a natural incremental
modernization. This strategy minimizes costly revisions to the object models by developing the
basic domain object model at the outset and unifying the modernized and legacy components
with it. The advantages of "unite-and-conquer" strategy do come at the expense of additional
upfront costs in building the domain (or business) object model, compared to the "divide-and-
conquer" approach which only develops those parts of the domain object model that are needed
for the modernized parts of the system at any particular stage of migration. Thus, "unite-and

conquer" is only recommended for a migration stage when there are sufficient resources avail-
able for a full domain analysis and object model development.

What programming techniques are involved in implementing wrapping? Two alterna-
tive techniques for implementing the interface between an object wrapper and legacy software
are described for implementations in the first Ada programming language standard (Ada 83):
direct calls to legacy procedures and functions using the interface pragma to a legacy language,
and indirect calls via an operating system or via an intermediate language. While direct calls
are preferable for accessing legacy procedures, this is not always possible due to environment-
specific barriers. The later standard, Ada 95, has added several new features to greatly facilitate
the interface to code in foreign languages, which should avoid any need for indirect methods
in many cases.

When wrapping an SQL database, there are three viable options for implementing an
Ada binding to SQL: all-Ada binding, embedded SQL, and use of an additional programming
language, such as SAMeDL (SQL Ada Module Description Language).

ES-5

In addition, a number of unresolved wrapping issues were identified:

• What general guidelines are appropriate for the transition from a mainframe-based
legacy system to a local area network based client-server model?

• What guidelines can be provided for mapping the legacy terminal I/O into today's
GUIs?

• What standards-based support can be provided for interfacing OO programs in Ada

(and other languages) to database management systems, whether relational or
object oriented?

• What guidelines can be established for selecting techniques for promoting interop-

erability among different DoD information systems? For example, is the Object

Management Group's Common Object Request Broker Architecture suitable for
this purpose?

• What are the unique issues related to wrapping and migration of real-time systems?

ES-6

1. INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of this document is to support the migration of legacy Department of
Defense (DoD) information systems by providing a detailed explanation of the potential

benefits of using the object-oriented (00) technique of software wrapping as a mechanism.
It specifically describes the risks, problems, and issues in the use of 00 wrapping tech-

niques for DoD information systems. It is also intended to be a guide to all the essential
activities in OO wrapping, from determining the suitability of wrapping applications to
implementing wrappers of legacy code or data using the Ada programming language. This
report is intended to address issues of interest to anyone interested in techniques for facili-
tating the software migration process.

1.2 BACKGROUND

Much of DoD's current software engineering activities center around the migration
from obsolete legacy software systems to modernized migration systems. Legacy informa-
tion systems are those systems currently operating that incorporate obsolete technology
such as closed systems, "stovepipe" design, and outmoded programming language or data-
base systems. Modernized migration systems are those systems already in existence or are
being planned that utilize or intend to utilize contemporary best practices in design and
implementation. OO technology (OOT) may be counted among the best practices for soft-
ware development by virtue of its efficiencies in development and maintenance and its
inherent support for reuse, as explained in a companion report [IDA95a]. Transitioning a
legacy system to a migration system has proven to be difficult; in response, several effec-
tive strategies are described in this report that would facilitate migrating to a modernized
system.

1.3 ORGANIZATION OF DOCUMENT

Chapter 2 reviews the concepts of wrapping software components and includes an
example from an actual software migration project to illustrate these wrapping concepts.

Criteria are identified for evaluating the suitability of a wrapping strategy and for selecting
components for wrapping.

Chapter 3 places wrapping in the broader context of alternative migration strategies
for a whole system, arguing the advantages of the "unite-and-conquer strategy" using a uni-
fied object model throughout progressive stages of migration, as compared to the other
three strategies (divide-and-conquer, divide-and-wrap, and one-shot rebuild).

Chapter 4 discusses wrapper types and content, and the wrapping of software com-
ponents at different levels of granularity.

Chapter 5 describes alternative 00 wrapping techniques that provide encapsulation
of legacy code or data during migration to a modernized system.

Chapter 6 discusses wrapping implementation. Several examples of wrapping using
Ada interface pragmas are given for functions or subprograms written in the Cobol, C, and

Fortran languages. A simplified scenario is then presented of a legacy migration situation
as a basis for illustrating wrapping techniques. Details are provided on wrapping a data file
and a program from the legacy system using Ada interface pragmas. Complete code for this
example is provided for reference in Appendix A. The general issues of 00 programming

in Ada are not analyzed in this document, but do receive detailed treatment in a companion
report [IDA95b].

Chapter 7 summarizes the basic guidelines for the application of wrapping and
identifies the remaining issues involved in the implementation of wrapping.

References, glossary, and acronyms are provided at the end of the document.

2. WRAPPING CONCEPTS

Software wrapping is a technique in which an interface is created around an existing
piece of software, providing a new view of the software to external systems, objects, or

users. Wrapping can be accomplished at multiple levels: around data, individual modules,

subsystems, or entire systems. This chapter provides a general introduction to the types of
software wrapping with additional details and examples in the subsequent chapters.

2.1 WRAPPING SOFTWARE COMPONENTS AS INDIVIDUAL OBJECTS

The narrow concept of a wrapped object is illustrated in Figure 1 on page 4. The
method icons surrounding the legacy software represent its encapsulation as a single object,
accessible only through the object-defined methods (or operations). Any user access to the
legacy software would be mediated through some of these methods, whether the user inter-
face is a complex set of objects constituting a graphical user interface (GUI) or simple ter-
minal line command input/output (I/O). Other system objects, and even other wrapped
objects, also access the wrapped legacy software only through the wrapper's methods.
Access from the wrapped object to other parts of the system may still occur directly from
the legacy code to databases and user interfaces, or may be mediated by calls to the methods
of other system objects. We refer to such wrapping of legacy software into a single object
as single-object wrapping or direct wrapping. Direct wrapping of different types and at dif-
ferent levels of granularity can be created through different partitions of a legacy software
system's functions, programs, and databases, as described in detail in Chapter 4.

2.2 WRAPPING SOFTWARE WITH OBJECT MODELS

The broader concept of an OO wrapper is illustrated in Figure 2 on page 4. An
object model of multiple classes and objects is created as part of the wrapper to provide a
natural, OO interface to the principal conceptual entities implicit in the original system. The
new objects and classes of such a wrapper can interface with the legacy programs and data
in different ways. An application programming interface (API) may mediate communica-
tion between the wrapper object model and the legacy program, as illustrated in Figure 2

User Input Monitor Display

Other Wrapped
Objects Other System

Objects

Key

Legacy Software

Method/Operation

r \ Object/Class

I/O Link

Figure 1. Legacy Software Wrapped as an Object

r

Application Programming Interface

Legacy Software

}

}

other
system
objects/classes

wrapper
object
model

J

Key

Legacy Software

^ Domain
W Class/Object

 Object link

Figure 2. Legacy Software Wrapped with Object Model

on page 4. When the legacy software is a database, a database server might provide the
functionality of an API, with objects accessing the database through SQL calls to the server.

When a separate API is used, it might be written in the 00 programming style of the mod-
ernized portion of the 00 system, e.g., the API, itself might be an object. Making an API
into an object effectively wraps the legacy software as a single object. However, when this
wrapper is combined with an object model of the legacy software, a much richer interface
is created than what appears in a simple "direct wrapper." Alternatively, the API might be

composed simply of minor modifications to legacy code to support external access directly
from wrapper objects.

However the legacy software is interfaced, the essence of the object model wrap-

ping approach is the interface through multiple classes/objects which are natural parts of an
object model of the application. This provides significant advantages over simply directly
wrapping software as an individual object: application objects will persist throughout sub-
sequent migration stages while wrapped software objects will need to be replaced when
their legacy software is modernized. These advantages are expanded upon in the discussion
on wrapping costs and benefits (Section 2.4 on page 7).

One of the earliest examples of object model wrapping is found in the geometric
modeling application described in [DIET89]. In the migration described, an API was com-
posed by modifying selected subroutines in the legacy system so that the object classes of
the modernized components of the migration system could access them. Object classes of
geometric models were defined in an 00 programming language, connected to correspond-
ing routines via the API, and instantiated to instances at run-time. This example is described
in some detail in the next section.

2.3 EXAMPLE OF OBJECT MODEL WRAPPING

An alternative OO interface to legacy system wrapping was pioneered at IBM's
Thomas J. Watson Research Center in the Tiered Geometric Modeling System (TGMS)
[DIET89]. This system provided an alternative OO interface to a legacy system, the Geo-
metric Design Processor (GDP), a solid modeling system composed of several hundred
thousand lines of PL/I code [WESL80, WOLF87]. TGMS used a set of objects in the AML/
X object-oriented programming language [NACK86] to wrap the entire GDP system. The
relationships between these systems are illustrated in part by Figure 3 on page 6.

This figure provides an informal representation of part of the object model in TGMS
that is used in wrapping the functionality of the GDP system. The hierarchy of geometric

Tiered Geometric Modeling System (TGMS)

f

Primitive

Boolean
Combo

l©\\(! Intersection

Y ^ (Union) /: ^ /^^\ \(Hemisphere)(cone)

Extrusion

f Revolution |

Application Programming Interface

J

Figure 3. Example of System Wrapping for a Geometric Modeling System

models is shown by straight line links between class icons, starting with the Solid class. The
primitive types of solid objects are shown to be cuboids, cylinders, hemispheres, cones, rev-
olutions, and extrusions. The non-primitive types are hulls, composed of the convex hull of
a set of points, and boolean combinations of other solids. Only those objects that interact
directly with the wrapped software (or its API) are shown as included within the scope of

the wrapper (in the shaded rounded box). Connections between wrapper objects and the

legacy code API are shown as simple straight line segments connecting object icons to the
API box. Higher-level objects, such as the generic Solid, Primitive, and NonPrimitive, are
shown as part of TGMS but not as part of the wrapper under the assumption that they do
not have such direct connections. Although the actual cutoff between wrapper objects and

others in TGMS was not clear from our source, the idea of this distinction is well illustrated
since it is quite possible that only the more specific object classes would be connected to
the legacy code implementing their functionality. Other non-wrapper objects of TGMS are

alluded to by the unlabeled object bubbles. These objects may include additional function-
ality and interface and control objects.

2.4 ADVANTAGES AND DRAWBACKS OF WRAPPING

2.4.1 General Advantages of Wrapping

Once wrapped, legacy software can function as a set of objects or classes within a
larger 00 system, interfacing via message passing.

Wrapping can establish compatibility of old code with new interoperable data
description standards by supporting the translation between these standards and
legacy formats at the methods interface to the wrapped software.

The concept of using a wrapper to establish data description compatibility is illus-
trated in Figure 4 on page 8, where the legacy software is depicted as having the format Fl,
the standardized format of the modernized 00 portion of the migration system is F2, and
the API performs the mapping back and forth between them.

Wrapping facilitates rapid transition of multiple legacy systems to fewer and more

interoperable systems, thereby improving interoperability and reducing maintenance
and modification costs.

Wrapping facilitates the rapid transition from legacy to migration systems by min-
imizing the amount of code rewriting and database restructuring required in the initial stag-
es of migration. Thus, a partially modernized migration system may be fielded sooner than
it could if the entire legacy system were reengineered at once. Maintenance and modifica-
tion costs can be more quickly reduced since there are fewer separate systems to maintain

when multiple redundant legacy systems are transitioned to fewer standardized systems.

Application Programming Interface

Legacy software

}
Migration Object Model:
format: F2

API mapping: F

}
l ^m

Legacy Software:
format: Fj

Figure 4. Wrapping Supports Translation to Standard Data Element Formats

However, migration systems containing wrapped components still face some of the main-
tenance headaches of the legacy systems since the legacy code is likely to be difficult to
modify. Object wrappers can ease some of the modification burdens of software mainte-
nance in so far as the modifications can be accomplished through specialization of a wrap-

per class without modifying the original code. But the feasibility of this technique will vary
depending on the system. However effective this technique might prove, bugs in the legacy
software will ordinarily require direct modifications, assuming the code is not reengi-
neered. Thus, maintenance requiring modification of legacy code cannot be entirely avoid-
ed in systems using wrapping.

Wrapping is most often discussed as a temporary measure—ordinarily as an interim
solution to the problems of modernizing legacy software, a stepping stone on the path of a
full system reengineering. In some cases it may also serve as a terminal treatment for obso-

lescent software, when interoperability is required temporarily for a system that is close to
retirement. In either case, it can provide some of the benefits of 00 systems without the
costs of fully reengineering all the legacy code. The wrapped sections of a legacy system
can participate as objects in a broader OO system, while the details of the legacy code and/
or data are encapsulated. When data are so encapsulated, the system may be accessed via
standard modernized data and object definitions without disrupting the legacy database.

Wrapped objects may even be reused in other systems if the granularity wrapping creates
objects of potential use elsewhere.

2.4.2 Object Model Wrapper Advantages

Wrapping with object models deserves special recognition as a possible means of
encapsulation distinct from direct wrapping of a legacy components as a single object. For-
tunately, such object models need not contain the full detail expected of a reengineered sys-

tem in order to provide structured encapsulation of legacy databases, code, or both. An

initial model of an enterprise, business, or other application domain structure need not
include much, if any, of the functioning methods that would implement business or appli-

cation operations. When functioning as a database interface, such a model may consist

primarily of objects with pointers to (or access scripts for) their corresponding instances
and attributes in the legacy data base. Operational aspects of these models can continue to
be performed by legacy programs until they are transitioned to the relevant objects or to
more specific instances of them in reengineered code. Thus, such object models may be
developed and incorporated in a migration system with much less effort than required by a

complete reengineering of the covered automated information system (AIS) activities.

Wrapper object models provide an extraordinarily useful approach to encapsulation
due to the rich object structure within which they accomplish it. Object models can encap-
sulate a database at much finer granularity than a single object wrapper can achieve. The
separate elements (objects) of an object model can participate in a structure of inheritance
and service relations that illuminates the essence of the encapsulated component, as con-
trasted with the mere data hiding found in the unstructured encapsulation of direct wrap-
ping. Wrapper object models provide a structural model for the objects implicitly handled
by legacy code and data. Unlike a simple single object wrapper, object models are not
"throw-away" code, discarded after the encapsulated components are modernized. Object
models can provide a lasting foundation of domain objects which can be reused in subse-
quent migration stages. Rich elaborations of the initial class attributes and operations can
be constructed in future migration steps to flesh out the details hidden in the legacy code as
it is modernized. In such transitions, any hierarchies contained in a wrapper object model
can be enriched through inclusion of more specific subclasses whose operations incorpo-
rate functionality previously accommodated by the wrapped legacy code. Such objects
may, of course, be reused, both in other migration systems, and as foundations for rapid
development of new applications.

In short, the use of object models for encapsulation of legacy system components has

many of the advantages ofOOTin general, while its costs can be minimized in its ini-

tial application through judicious abstraction of only the essential features of the
model objects.

The example outlined in Section 2.3 on page 5 for object model wrapping in TGMS
exhibits these advantages. TGMS can be easily extended with new classes of solid models

through their addition to the TGMS 00 hierarchy. Objects in these classes may then be

combined with existing solid models using the existing wrapped boolean combination

operations from the GDP legacy system. The wrapped capabilities of TGMS may also be

easily extended by specialization of the legacy object functionality using 00 inheritance.

New classes might be added as specializations of revolution and extrusion classes, for
example. As with any OO subclass, such specializations can utilize any applicable opera-
tions in their existing superclasses. Thus, the wrapped legacy code of GDP is readily
extended with new functionality. If the GDP code had been wrapped more directly as a sys-
tem or as individual functions and data, such natural extensions would not be so straight-
forward to implement.

2.4.3 Direct Wrapping Drawbacks

A drawback specific to the direct wrapping technique is the scale of large legacy
components when wrapped as objects. If a legacy software component of a large size were
to be fully reengineered using OOT, it would most likely break down into multiple inter-
acting objects to better reflect its implicit organization of information and procedures.
Direct wrapping can save some of the work of this decomposition and reorganization in the
short term when wrapping at a coarse level using large software components. But such sav-
ings come at the cost of a coarser scale representation that may be more awkward to inte-
grate with the rest of an 00 system. Where other objects might only need to access some
small part of the data or functionality of the wrapped object, they must refer to the wrapped
component as a whole. Where other systems may only need minor functions from a
wrapped component, they will have to incorporate the whole component if they are to ben-
efit from its reuse. Furthermore, subsequent reengineering of a directly wrapped legacy
program may require substantial rework of an existing class hierarchy in order to accom-
modate the new classes abstracted from a legacy program.

10

Wrapping legacy software components directly as objects may share some of the
advantages of wrapping with object models if the direct wrapping is performed at a fine

enough granularity, such as the level of individual functions. Such fine granularity allows

the reuse of function objects without the unneeded baggage of the rest of a system. But

wrapping legacy functions as objects remains unlikely to produce a natural and lasting

object model of the system domain. Functions ordinarily map more naturally into the meth-

ods of an 00 system than into its objects. Effective 00 design typically requires taking a
fresh look at the system in order to abstract the relevant objects from its requirements and
functionality. This fresh perspective can be difficult to achieve if restricted to creating

objects from direct wrappings of legacy components. While direct wrapping of legacy sys-
tem components can often be accomplished more quickly than wrapping with multiple

newly abstracted objects, the latter approach can provide a more stable class/object struc-
ture throughout subsequent migration phases.

2.4.4 General Drawbacks of Wrapping

The principal drawback to any type of wrapping is in long-term maintenance, since the

legacy software remains beneath the wrappers, and is likely to be difficult to maintain
or modify.

This drawback can be substantially mitigated if future modifications can be imple-
mented within the OO portion of a migrated system, external to the legacy code. The addi-
tion of new methods and operations to a class wrapper, for example, may be accomplished
without touching the legacy code. Augmentation of the methods, attributes, or both of a
class wrapper might also be achieved independently of the legacy code by creating new
subclasses with the additional structure and/or functionality. Maintenance involving fixes
to bugs in the legacy code may be more difficult, however, requiring direct modifications of
the legacy code itself. These potential problems with maintenance and modification are rea-
sons for considering wrapping as only a temporary solution for modernizing software sys-
tems, with full reengineering (or obsolescence) as an eventual goal (or expectation).

For all these reasons, it is preferable, when the resources are available, to wrap legacy

software with a carefully abstracted object model than to directly wrap a whole pro-
gram or system as a single object.

11

2.5 WRAPPING CRITERIA

The principal criteria for selection of some component of a legacy system for wrap-

ping are whether it is feasible to wrap and whether there are good reasons to wrap
as opposed to reengineering or replacing it.

Feasibility of wrapping depends primarily on how modular the legacy system com-
ponent is and how readily it can be accommodated within the migration target environment.
If a segment of code and/or data are fairly self-contained, with relatively few types of calls

out to and in from external code, then it may be feasible to wrap it efficiently. When a seg-

ment of application code is interwoven with complex input/output (I/O) to users, data

stores, other code, and other applications, it may be as costly to wrap as to reengineer, so

that reengineering is preferable for its more thorough modernization. Even a very modular

system component can be difficult to wrap if its elements are not well supported within the
targeted migration environment. Code written in a proprietary language for obsolescent
hardware or operating systems, for example, may have no support on a modern computing
platform. Obsolete database management systems may also prove impractical to port to
new platforms. Thus, wrapping feasibility must take into account both the modularity of the
legacy component and its support within the target migration environment.

A major reason for considering wrapping some parts of legacy systems is a situation
in which it is especially difficult to fully reengineer that part of the system, but strong pres-
sures exist for modernizing the whole system quickly. Some components of a legacy system
can be especially difficult to fully reengineer due to a variety of factors, such as the follow-
ing:

Absence of documentation

Departure of all domain experts

Complexity of code

Fragility (or brittleness) of code

Size of code or database

Staffing resource limitations

At the same time there may be strong pressures to modernize the existing legacy system to
meet pressing deadlines due to factors such as the following:

12

• Expiring hardware and software contracts

• Shift to new platforms

• Requirements for interoperability with other reengineered AISs

• Data item standardization requirements

Under conditions like these, wrapping may be the most effective short-term means of
meeting interim modernization deadlines.1

Consider, for example, a hypothetical legacy information system written in Cobol,
hosted on IBM mainframes whose maintenance contract is up for renewal in 10 months.
Imagine that an analysis has shown that the total costs for hardware to replace the aging

IBM mainframes with workstations under a client-server architecture are much less than
the current yearly maintenance costs. Such discrepancies between the costs of replacement
versus maintenance of obsolete system hardware are not uncommon in such transitions.
Suppose, further, that this system is also required to be interoperable with several other
information systems that have been recently transitioned to OOT and are interacting using
the CORB A (Common Object Request Broker Architecture) distributed 00 protocols. In
addition, budgetary constraints project decreasing funds for maintaining the same basic

functionality of this system augmented with the additional interoperability requirements.
Thus, there are budgetary pressures for a transition to a system of lower operating costs,
there are time pressure costs to effect the transition before the old hardware maintenance
contract must be renewed, and there is some reason to consider a transition to 00 technol-
ogy in order to facilitate meeting interoperability requirements. In such a context, OO
wrapping techniques may be the key to transitioning the legacy system to a partially mod-
ernized one within the given constraints on budget and within the time constraints.

Some system wrapping may be the most effective strategy in cases in which,
although the reengineering is not especially difficult, the time pressures and resource limi-
tations do not allow full reengineering within a required interim modernization timeframe.
Alternatively, some whole systems may be so large or complex that reengineering may be
too daunting a task to tackle all at once. In such situations, wrapping of subsystems could
provide the basis for an incremental reengineering in which decomposable subsystems and
components are first identified and wrapped with standardized interfaces, followed by
incremental reengineering of these wrapped objects.

Other techniques, such as code translation, or database modernization, may also be effective for interim
modernization of some legacy system components, as discussed in [BLSM93].

13

Another situation in which wrapping may be indicated arises when a legacy system,
or some portion thereof, is expected to become obsolete within the relative near term. In

such cases, a full reengineering effort may be a waste of resources, since the system might
no longer be needed by the time it could be reengineered. But it may not be possible to leave

the legacy system completely unaltered for its remaining lifetime due to incompatibility
with interacting AISs that are modernized prior to its termination. Thus, wrapping could be

a cost-effective means of ensuring short-term compatibility without wasting the efforts of
reengineering obsolescent software.

14

3. SYSTEM MIGRATION STRATEGIES

In this chapter, we view the migration process as a whole and examine how wrap-
ping may fit into four broader strategies for entire system migrations, before getting into
the details of different kinds of wrapping. The four strategies are divide-and-conquer,

divide-and-wrap, unite-and-conquer, and one-shot rebuild. In the next chapter, we focus
more locally on different types of components in legacy systems, describing how wrapping
may be used to facilitate their migration to a modernized system.

3.1 DIVIDE-AND-CONQUER

One general strategy for AIS migration, called "divide-and-conquer" [TAYL92],
proceeds incrementally, dividing legacy subsystems and applications into those selected for
immediate conversion to OOT and those that are not. The most suitable candidate or can-
didates are converted and integrated with the existing systems, and the process is repeated
until either the entire system or all suitable parts of it are converted to 00 form. This sup-
ports a staged transition, which is ordinarily more manageable and involves lower risk than
attempting to convert an entire system at once.

Wrapping could participate in this strategy by providing temporary modernization
of some system components to ease their integration with fully converted components. Fig-
ure 5 on page 16, for example, illustrates a divide-and-conquer modernization increment
for a legacy system consisting of four application programs, API, AP2, AP3, and AP4, and
three databases, DB1, DB2, and DB3. Application program API is wrapped whole as a sin-
gle object. AP2 is completely reengineered as an 00 program. The databases, DB1 and
DB2, are both wrapped whole to provide suitable interfaces for data access from the reengi-
neered AP2. AP4 is slightly modified to access its data through the wrapper of DB2. AP3
and DB3 are left unchanged.

However, leaving some system components untouched, such as AP3 and DB3, can
pose some integration difficulties, and a mixed traditional and OO system components

could be awkward to support throughout the duration of incremental modernization. This
is a potential drawback to any divide-and-conquer scheme, whether or not wrapping is

15

Legacy system:

User I/O GUI2

AP1 AP2

DB1

AP4

HOB?

User I/O

_A
SüSfiäÜ

rÖBÄ

Modernization increment:

User I/O User I/O

X
AP3

AP4*

\

DB3

Figure5. Divide-and-Conquer With Some Wrapping

involved. However, wrapping can help alleviate this problem, as demonstrated by the next
general strategy, which we call "divide-and-wrap."

3.2 DIVIDE-AND-WRAP

Wrapping can be used quite broadly to effect a complete conversion of the legacy
system to OOT in a single step by wrapping everything that is not fully reengineered.
Wrapped components could then be incrementally reengineered, as feasible, using 00
techniques. Figure 6 on page 17 illustrates this strategy by wrapping all applications and
data except a single application, AP2, which is fully reengineered. In this example, one
application program, API, is wrapped and supplemented with a GUI and an additional

16

object/class structure, as shown. Two databases, DB1 and DB2, are wrapped separately.
One subsystem, consisting of database DB3, application program AP3, and its user inter-
face, is wrapped in its entirety, augmented with a GUI and reconnected through its new

wrapping methods to the reengineered application AP2 and to external information sys-
tems. One application, AP4, is simply wrapped and reconnected via methods to its connect-

ed database DB2 and a calling application (the reengineered AP2). This migration system

then consists of objects of a wide range of granularity, from simple GUI objects and domain
objects to program objects, database objects, and a whole subsystem object.

Legacy system:

User I/O

X
GUI2 User I/O

AP1 AP2

AP4

A.
AP3 ^y External\

-""^V AIS I

00 migration system: t

Figure 6. Divide-and-Wrap Migration Strategy

17

This strategy eases integration of all the pieces at different stages of transition since
the methods interfacing wrapped objects can perform any necessary translations between

legacy and modernized components. It offers flexibility in scheduling the transition incre-
ments through variations in both the amount of reengineering and the granularity of the
components wrapped. In some cases, whole subsystems may be wrapped for a lower cost

transition stage, while wrapping may be executed at a finer level during transition stages
when more time and staff resources are available.

A migration system resulting from such wrapping and reengineering procedures
can enjoy multiple immediate advantages over the legacy systems, such as the following:

• Conformance with standardized data definitions

• Improved interoperability with other AISs

• Greater ease of user operations through new GUIs

• More effective display of information through new GUIs

• Functional consolidation of multiple legacy systems in one migration system

It can also benefit in the long term from the following:

• Improved maintainability of reengineered code

• Lowered maintenance costs of fewer systems

• Eased restructuring of internal data through encapsulation

• Eased modification of legacy code through encapsulation

• Potential reuse of objects (reengineered or wrapped)

Software wrapping can thus ease the transition of legacy AISs to migration systems that
are fewer, easier, and less costly to operate, and easier to modify, fully modernize, and
maintain.

The principal drawback to this general transition strategy is that wrapping large por-
tions of a system may require considerable rework (of object hierarchies, methods, and data
structures) when these components are unwrapped and decomposed into more meaningful
objects. Simply wrapping a whole program or database as an object cannot be expected to
create objects that correspond well to the real-world entities that are the natural objects of
interest in our information systems. When these wrapped objects are unwrapped and

decomposed into constituent domain objects and methods at a later stage of migration, it

18

will be necessary to rewrite their previous access methods and all messages for them from
other parts of the system. More extensive initial OO analysis can support an alternative
strategy that promises to reduce both the revamping of object hierarchies and the rework of

messages over the whole course of system migration, as discussed in the next section.

3.3 UNITE-AND-CONQUER

A "unite-and-conquer" strategy [TAYL92] achieves a unification of system applica-
tions and databases through a common OO framework that organizes access to legacy code

and data as well as to new and reengineered OO system components. Such a framework can
be constructed as part of developing business or enterprise models of the business activities
supported by the legacy information system.1 OO business models are portrayed in

[TAYL92] as a sort of intermediate layer in a migration system that mediates between new
applications and object data stored either in legacy databases or in new OO databases.

Applications would send messages to business model objects requesting attribute data that
the objects retrieve from the databases. Some existing applications might be replaced
entirely by the business model or by applications built on top of it.

Legacy code can also be modified to access its data through the business models,
thereby encapsulating the data and rendering the legacy code immune to disruption from
modernizations of the data stores. This conception of unite-and-conquer is illustrated in
Figure 7 on page 20. The business models are illustrated by an oblong region containing
the classes/objects of the models and their interconnections. Illustration of the connections
from modernized code to the business model and from the business model to legacy data-
bases is simplified with single lines representing the multiple connections to and from indi-
vidual objects in the models. The reengineered version of application AP2 is shown with
both direct and mediated access to the database, DB1, although even its direct access is
mediated by its own objects, effectively maintaining the encapsulation of the data in DB1.

While none of the legacy data stores are altered in this example, it is quite consistent
with this strategy to directly modify the data stores. Databases could be encapsulated as
objects or upgraded to full OO databases. Further encapsulation of the databases in the
example, however, would be of little or no advantage. Mediation of database access by the
objects of the business model already encapsulates the databases at a finer granularity than
simply wrapping them whole as objects. Upgrading the legacy databases to full OO data-

See [TAYL92], Chapter 6, "Creating an Object-Oriented Information System," for more on business mod-
els.

19

Legacy system:

User I/O

ill
User I/O

Modernization increment:

[GUH> ^GUI2j>

t
modernized
code

business
models

untouched
legacy code
&data

Figure 7. Unite-and-Conquer Strategy

bases may provide some advantages in terms of maintainability or in access efficiency for
complex objects. However, it is quite feasible to retain a legacy relational database man-
agement system (DBMS) for the physical storage of the object data of the business models.
Some object-oriented DBMSs actually use this approach to storing the attributes of persis-
tent objects.

Legacy application programs may be transitioned to different levels of moderniza-
tion during a unite-and-conquer migration stage. Figure 7 on page 20 illustrates direct
wrapping of application API augmented by a GUI, full 00 reengineering for AP2, and

20

simple database access modernization for AP3. In this last case, the modernized program

AP3*, illustrates another alternative for interfacing legacy code with encapsulated data:
while the program is not object oriented, all calls from it for data access/update are all

replaced by calls to objects in a business model, which then access the database. In fact, all

of the first three applications access legacy data through classes/objects that effectively
encapsulate the underlying databases. Application AP4, in contrast, is left unmodified in

this example, so it does not make use of the business models and continues to access its data
directly from DB2; hence DB2 is not fully encapsulated. A unite-and-conquer strategy
offers many such choices of modernization alternatives, which can be tailored to fit the
available resources and constraints at any particular stage of migration.

Unifying object models provides the unite-and-conquer strategy with substantive
advantages over the previous strategies. These models provide transparent access to the

data stores throughout the whole migration process. This supports incremental moderniza-
tion of the legacy system while minimizing costly revisions to object models and data
access code. Business models provide a new OO perspective on the business domain that
can be helpful in guiding subsequent modernization phases. Business model objects should
expect considerable reuse at subsequent phases of migration, and possibly even in other
systems, thus lowering costs of subsequent migration activities. The business model also
provides a core of system objects whose use can accelerate development of new applica-
tions, if they are needed.

However, developing business models can be a time-consuming analysis task for
large systems since the essential business objects must be identified and mapped to the rel-
evant existing programs and/or databases. Thus, a unite-and-conquer strategy can only be
effectively executed at a migration stage when sufficient resources are available for this
extensive analysis. When the resources are available, the payoff can be considerable in later
stages of migration. When the resources are not available at a particular stage of migration,
then a more piecemeal strategy can be adopted, such as divide-and-conquer or divide-and-
wrap.

3.4 ONE-SHOT REBUILD

Thus far, all the OO migration strategies considered have been incremental. What

about rebuilding an AIS in one round of the traditional analysis-design-implementation
cycle? Should that be considered as a viable alternative to incremental migration? Ordinari-
ly, no. Some experts [BROD93] refer to this strategy as "Cold Turkey," and argue convinc-

21

ingly that it carries substantial risks of failure, at least for large, critical AISs. Another 00

author and consultant [TAYL92] goes so far as to advise a business to declare Chapter 7

bankruptcy if taking a one-shot rebuilding approach, since he predicts both will lead to the
same result. Multiple experiences in building large 00 systems indicate that, for 00 sys-

tems in particular, incremental development is more effective than the classic waterfall
development model (as explained in the companion report on the 00 development process
[IDA95a]).

While a one-shot waterfall development has never been recommended for OO sys-
tems, it can be feasible in smaller AISs to apply locally incremental development to the sys-

tem as a whole. Consider, for example, a small information system that is of comparable

size to a single application in a larger system. There need not be much difference between

the reengineering strategy for the small system and the large application. In small enough

such systems, the 00 analysis, design, and implementation might well proceed with

respect to the system as a whole, without the need to defer treatment of any particular leg-
acy components (applications or data stores). Such a unified rebuild would still best pro-
ceed incrementally, although the increments would be dictated by the OO analysis rather
than by the legacy system components, and the reengineered system might only be sched-
uled for operations after the entire development was complete. When this sort of one-shot
rebuilding of smaller legacy systems (or subsystems) is feasible, then interim measures,
such as wrapping or gateways, may be unwarranted for that system, although they may still
prove valuable in a broader context of other interacting systems.

One-shot rebuild could also be viable for a large legacy systems if it is very similar
to an existing 00 system that has already been implemented, or if it can be constructed out
of existing tested frameworks and repository objects. In other words, if all the main pieces
of a system have already been implemented in an OOT, it may be feasible to put them all
together, tailored for context, to replace a legacy system in a single migration step. With the

growth of object repositories and 00 application frameworks, this method of system devel-
opment may be expected to become more commonplace.

22

4. WRAPPER CONTENTS

Legacy software and data can be partitioned in many different ways to isolate those

components that are most amenable to wrapping. Depending upon the criteria discussed in
Section 2.5, analysis might indicate any of the following types of candidates for the con-
tents of an OO software wrapper: function or procedure, data file, database, application pro-
gram, or subsystem. Each of these different applications of wrapping is discussed
individually in the following sections.

4.1 WRAPPING FUNCTIONS OR PROCEDURES

The lowest level of legacy code wrapping is realized when the contents of a wrapper
is an individual procedure or function. This level of wrapping can be appropriate when parts
of a legacy system are being reengineered using OOT, but some of its functions are difficult
to rewrite in OO code, for reasons such as size, complexity, or absence of a required domain
knowledge or expert.

Figure 8 on page 24 illustrates the idea of transitioning a legacy application program
to an OO program in which some of the legacy code is retained beneath the wrappers of its
objects. The two alternatives of direct wrapping and wrapping via domain objects are illus-
trated.

When feasible, it is best if the wrapper objects are abstracted from the application

domain rather than directly from legacy software components since domain objects
will integrate better with a domain model than will software objects.

In both cases, only a single function (F4) is selected for wrapping, although many
functions compose the legacy program. The other functions are presumed to be reengi-
neered into operations of objects in the new OO migration program. More generally, any
number of legacy functions may be selected for wrapping or reengineering depending on
their suitability, as discussed previously in Section 2.5 on wrapping criteria.

23

Program

Legacy Program 00 Program with function
directly wrapped as an object

OO Program with function
wrapped by domain object

Figure 8. Wrapping Program Functions

In the first alternative of Figure 8, the function itself (F4) is transformed into an
object/class in the new OO program, as indicated by the special-purpose wrapping icon.

Such an object would be an instance/subclass of a class of abstract function/procedure
objects. This is the simplest type of mapping from the legacy functions to objects/classes
in an 00 migration program, requiring the least amount of 00 analysis of legacy software
and requirements.

The second alternative uses a natural domain object or class (here labeled 04) from
the application domain to wrap the function, which is then accessible only through this
object/class. In this case, however, there is no need to "objectify" functions into a class of
abstract objects; the function (F4) does not appear as an object in this system, but merely
as external code accessed by an operation (op2) of a domain object (04). This is a degen-
erate case of wrapping with a domain object model, in which the wrapping model consists

of a single domain object. When wrapping is performed at the level of functions, it may be
more natural to use a single type of object to wrap a given function, since functions often
have a dominant association with one particular class of objects. In many cases, a suitable
class to which the function applies can be derived from one of the arguments of the legacy
function, which may themselves refer directly to objects or indirectly in virtue of standing
for a property of a class of objects. When wrapping is performed at the level of programs
or subsystems, it is more likely that a multitude of object classes will better represent the

24

object structure of the legacy code being wrapped.

Wrapping functions as operations of application domain objects ordinarily provides

a better basis for subsequent migration to a fully reengineered system since legacy

functions/procedures normally correspond better to methods than to domain
objects/classes.

Creating object wrappers at the level of functions and procedures offers potential
benefits over coarser-grained wrapping at the level of whole programs or systems. Finer-
grained objects can be reused without the encumbrance of ancillary code that may be irrel-

evant in other applications. It can also ease the transition to a fully reengineered migration
system to have already decomposed programs into sets of interacting objects. These advan-
tages of fine-grained domain object wrapping accrue at the expense of higher initial devel-

opment costs compared to some of the coarser levels of direct wrapping. Choices of
appropriate levels of wrapping are likely to be driven largely by the ease of decomposition
of legacy software and the time and cost constraints at any given stage of software migra-
tion. With more time and resources, finer-grain wrapping is feasible, while tight time and

resource constraints may require coarser-grain wrapping. Thus, the OO technique of soft-
ware wrapping provides the migration team with considerable flexibility in meeting these
constraints.

In some cases it may even be advantageous to wrap all, or most, of the procedures
from a legacy program, rather than rewrite any of them initially. This could reduce the ini-
tial transition costs as compared to full reengineering, while providing a whole set of pro-
gram or domain objects that conform to new data standards and might be reused elsewhere.
Full modernization of the legacy code could then proceed in small increments, object by
object, with minimal adjustments to the object structure only when indicated by deeper
analysis.

4.2 WRAPPING DATABASE FILES

While the database of Figure 8 on page 24 is unchanged from the legacy system to
the modernized one, it too could be wrapped to better encapsulate the data. Individual data
files, data tables, and even whole DBMSs could be wrapped as objects. Figure 9 on page
26 illustrates two alternative ways to wrap an individual data file: directly as a file object,
or as a domain class representing a set of domain objects whose data are contained in the
file. Direct wrapping is represented using the standard direct wrapping icon introduced pre-

25

&*M8fflfflffi
PS m

äBfciiJwMuaitfcia ÜÜ

Legacy data file Data file wrapped
as file object

}
domain
class

Data file wrapped as
a domain class

Figure 9. Wrapping Data Files

viously in Figure 1. Wrapping as a single domain class is the simplest case of object model

wrapping (discussed in Section 2.2) in which the object model consists of a single class. A

single legacy data file might also be wrapped with multiple domain classes if it contains
data for multiple types of domain objects.

Systems with isolated data files independent of any DBMS might be transitioned to
an 00 system using either of these alternatives. Simply wrapping the data file with query,
update, and delete methods could serve the purposes of some data standardization require-

ments and encapsulate the data to isolate its internal format from its access methods. A full
transition to wrapping with domain classes might better support reuse and modularity,
though it may incur additional costs from the additional restructuring when developing rel-
evant object classes.

4.3 WRAPPING DATABASE TABLES

Separate database tables within a relational DBMS might also be effectively
wrapped by restricting access to a set of methods defined for each table or group of tables,
as illustrated in Figure 10. Conceptually, the server, or virtual copies of it, is effectively
wrapped with each wrapped database table, since access to such data must be mediated
through its server. Thus, in order to conform with the 00 paradigm of encapsulated data,
access to the server would have to be restricted to the developed object methods (either by
design conventions or system constraints). So the server is effectively encapsulated in order
to encapsulate the data it serves. This approach to wrapping data can offer some of the ben-
efits of objectifying a database without performing a full decomposition into primitive
objects.

26

the entire database as an object, as illustrated in Figure 13. This approach may retain the
same order of efficiency as queries in the legacy database because the same database que-
ries could ultimately be invoked by the database object's methods. Complex queries could

be posed directly to the wrapped DBMS object and processed as joins. The only extra query

costs are the small constant-time overhead incurred passing through the methods. The data

are all encapsulated, so that the access methods can be independent of the data storage orga-

nization. Wrapping a whole database system like this can be an efficient means of estab-
lishing compatibility with new interoperable data standards while providing a framework
for transparent incremental modernization of the internal data representation. However, this

approach might have to compromise some of the modularity and encapsulation implicit in
an object model of the database since access to stored objects could not all be mediated by

their distinct classes if complex queries are to be handled directly. Access to objects cannot
always be mediated by the operations of their individual classes if complex queries about
different classes of objects can be sent directly to such a DBMS object wrapper.

Database Server

Legacy DBMS: server & database Wrapped DBMS

Figure 13. Wrapping a Whole DBMS

4.5 ALTERNATIVE DATABASE ENCAPSULATION MODELS

Object wrapping is not the only or perhaps the most natural means of achieving
encapsulation of a legacy database. An interface or "gateway" to a database can be written
to bide its internal structure1 without conceptualizing the result as an object or set of
objects. Such alternatives achieve very much the same effects as direct wrapping when
applied to databases, since a database wrapped as a single object is unlikely to participate

1 Software gateways, as presented in [BROD93], are discussed in Section 5.1.

29

in any of the other distinguishing features of objects. Wrapping an entire database creates

an object too large and unstructured to be a likely candidate for hierarchies, inheritance, or
reuse. It is not that databases cannot be decomposed into useful hierarchies of objects, but
that wrapping a whole database does not provide any such decomposition. Thus, casting an

encapsulated database as an object offers little advantage over "gateway" conceptions of
encapsulation. While wrapping does provide some uniformity within an OO system, the

principal benefit of information hiding derives from the encapsulation, so that other meth-
ods of encapsulation might do as well.

One interesting proposal using object models for database encapsulation is the

"three-tier solution" for the problem of maintaining database integrity within a distributed

information system with heterogeneous databases [L0094]. This solution involves using a

set of OO database servers as a middle tier between presentation/application software and
the distributed heterogeneous databases of large information systems. This middle tier
would have a central OO object model—a global conceptual schema—that defines a com-
mon global view of shared subsets of all the local conceptual Schemas of the databases it
accesses. Such an object model not only encapsulates the data of all the underlying data-
bases, but also functions to enforce system-wide data integrity strengths. Such system-wide
constraints could not all be enforced locally by bottom-tier database servers because they

do not have access to all of the relevant data or knowledge of the relevant applications. The
data encapsulation provided by this scheme can also support incremental transparent mod-
ernization of data stores. This proposal is one more example of how object models can be
useful for wrapping data stores within large information systems.

4.6 WRAPPING PROGRAMS

Entire programs can be wrapped just as well as procedures and data, although
special care may be involved in mapping their I/O interfaces into the OO paradigm. The

interfaces of wrapped procedures or functions are generally straightforward to adapt:
simply replace calls to them by calls (or messages) to their encapsulating methods. Inter-
faces to wrapped data files or databases are simply reconstructed largely by replacing direct
queries and updates with calls to methods that generate them. The interface structures of

legacy programs, in contrast, are typically complicated by their bi-directional interfaces to
users, via keyboard and monitor I/O, or a GUI in more contemporary systems. When the
user interface exchanges I/O directly with an external device (or device buffers), such as a
keyboard and monitor, its treatment within an OO system admits many alternatives. I/O
devices themselves could be remodeled as objects which engage in message traffic with the

30

wrapped program object; the whole interface could be reworked as a GUI in which GUI

elements are modeled as objects; or the user interface could be left alone with some viola-

tion of the 00 tenet of encapsulation. Some of these alternatives are illustrated in Figure
14 on page 31.

Keyboard Input

Monitor Display

Application
Program

,»'»trt,ji.

Legacy program &
interfaces

Wrapped program object
w/ I/O device objects

Wrapped program object
w/GUI objects

Figure 14. Wrapping Programs as Objects

Another class of alternatives is generated from the technique of wrapping with an
object model constituted of multiple objects. This approach generates object classes and
their instances from analysis of the application domain, interfacing these objects to the leg-
acy application program via either an API or direct calls to the legacy functions or subpro-
grams, as illustrated in Figure 15 on page 32. Such object model wrapping provides finer

granularity in the generated objects and holds more promise for abstracting objects/classes
of lasting value throughout subsequent software migration phases (if any).

If I/O devices are themselves wrapped into objects, then input device objects pro-
vide program input by sending messages to the program's methods. A program's output
would then direct output by sending messages that request output services to the methods
of the output device objects. Thus, this approach would require modifying the output code
of the program to call the appropriate display device methods. If user I/O were reworked

using a GUI, then individual GUI objects would communicate with the program object via
messages, assuming an object-oriented GUI.

31

Keyboard Input

Monitor Display

other
programs

Application
Program API

Application
Program

new
graphical
interface

new
object
model

legacy
program

Legacy program & interfaces Legacy program wrapped w/
object model, and GUI

Figure 15. Wrapping Programs with Object Models

Creating a GUI for program I/O, while obviously a more costly alternative, can
provide some unique advantages in the larger context of software migration. In isolating the
VO from the program, it supports the incremental modification of either one independently
of the other. Monitor displays can be reformatted to take advantage of graphical display

techniques, and programming functionality may be added through the user interface with-
out disrupting the wrapped legacy programs. This latter capability is of special value when
multiple software applications are being migrated to a single encompassing application. In
such cases, which are expected to dominate the DoD software migration program, a single
existing system may be selected as a basis for the targeted migration system. These selected
legacy systems cannot always be expected to include all of the functionality of the deselect-
ed systems. In many cases, a legacy system selected for a migration system target will
require additional functionality in order to folly meet the requirements of all the legacy

systems being replaced. In such circumstances, the separation of program from user inter-
face can provide the framework for augmenting the selected legacy system with minimal
disruption to the original code. The combination of wrapping legacy programs and inter-

32

facing them to a GUI may thus provide the most effective framework for a staged migration
of legacy systems in many such migration contexts.

4.7 WRAPPING SUBSYSTEMS

The next level of complexity of wrapped software/data objects is wrapping sub-
systems where the scope of the wrapper is expanded to include one or more data stores

along with a program, or programs, as illustrated in Figure 16. The user interface for such
wrappers admits of the same variety of treatments as do the wrapped programs just dis-
cussed; I/O may use the legacy procedures filtered through the wrapper interface, or a sep-

arate object-oriented GUI may be created, as illustrated. The separation of the user interface

into a GUI, even a primitive one, can be advantageous for independent modification of
interface and program functionality, as discussed previously.

Keyboard Input

\ Monitor Display

\

Application
Program

Legacy program
& interfaces

Wrapped program & data-
base w/ I/O objects

Wrapped program & data-
base w/ GUI objects

Figure 16. Wrapping Program and Data Stores as an Object

This level of wrapping is least disruptive when the data stores wrapped with the
program are used exclusively by them. Otherwise, the encapsulation of the data created by
wrapping it with the rest of the subsystem would require all other access to this data to be
mediated by the wrapper. Thus, any external access routines for such a wrapped database
would have to be rewritten to access it via the wrapper.

33

The most complex of wrapped software objects can encapsulate entire software sys-
tems or subsystems, including a user interface along with application programs, and data-

bases. Such a software subsystem might be selected for wrapping if it was too challenging
to decompose at a given stage of migration but needed a coherent interface with other com-
ponents of the larger system. Figure 17 illustrates the transition from a legacy system to a

migration system in which an entire subsystem, consisting of database DB3, application
AP3, and its graphical user interface GUI3, is wrapped as an object. The database, DB3,
wrapped in with this subsystem is uniquely accessed by the associated program, AP3, so

that wrapping does not require any changes to its access. In this example, the new interface

GUI3* has been added outside the wrapper of the subsystem in order to establish uniformi-
ty of user interface with a new system-wide standard.

Legacy subsystem:
vGUI3

AP3 External
AIS

00 migration subsystem:
t

Figure 17. Wrapping Entire Subsystems

34

5. ALTERNATIVE ENCAPSULATION TECHNIQUES

Much of the benefit of the wrapping technique derives from its encapsulation of
wrapped legacy software or data. 00 wrappers, however, are only one means of achieving
encapsulation. To provide a broader perspective on encapsulation, we discuss some alter-

native conceptions of encapsulation for legacy systems. These conceptions may also con-

tribute to AIS migration strategies whose goals include incorporation of OOT, although
they need not be object oriented in themselves.

5.1 GATEWAYS

Gateways are described by Brodie and Stonebraker [BROD93] as software mod-
ules placed between operational software components that control communications

between them. Gateways are discussed as the main device of their methods for incremental
migration of legacy information systems. Gateways can insulate software components on
one side from changes made to legacy components on the other side, thereby supporting
incremental modification of legacy components without disrupting the rest of an informa-
tion system. The three types of gateways in Figure 18 on page 36 are distinguished by their
placement within an information system: (1) a database gateway between a database and an
application; (2) an application gateway between an application and a user interface; and (3)
an information system gateway between a whole information system and the users (and any
interacting AISs).

Gateways are very general types of software mediators: they can achieve informa-
tion hiding in multiple directions, they can be formulated within any type of language or
programming paradigm, and they can mediate between many different types of software
components, e.g., conventional programs, modules, functions, databases, interfaces, and
users, as well as objects. In this respect, a gateway can be seen as a generalization of a wrap-
per, as a wrapper establishes a one-way gateway through its methods into a software com-

ponent in creating an object. The wrapping of methods around a legacy software
component can be considered a type of gateway to that component. But gateways need not
be restricted to containing a single object. The 00 implementation of an entire business

35

IS IS
End

ISs Users

k- -j->'.",<-, '

si, ■ ■ ■ SI-,

Legacy Interfaces,
Applications

Legacy Applications

Legacy Database Service

Figure 18. Gateway Types and Placements

model, as illustrated for the unite-and-conquer strategy of Figure 7 on page 20, can be
viewed as a type of gateway, in this case a database gateway between the modernized code
and the legacy databases. A gateway with this type of structure, however, does much more
than simply encapsulate the underlying legacy data: it provides a structure for new appli-
cations and for transferring the functionality of legacy programs to modernized software
(e.g., business objects).

Even gateways without any sort of object orientation might be used effectively as
part of a migration to an 00 system. Gateways might be written in a non-00 language in
early stages of a migration project because of the greater familiarity and confidence with
that language by the available software engineers. Such non-00 gateways could still sup-
port transparent incremental migration of legacy programs and data to 00 systems by iso-
lating different levels of the system from each other. Eventually, any such gateway would

36

have to evolve towards an 00 model in order to support communication with objects on
different sides of the gateway.

Gateways may, of course, also be used for migration of legacy systems to modern-
ized system without any object orientation. For such projects, the gateway's isolation of
software components from changes can support an orderly incremental transition to the
goal system, whatever software paradigm is used. Much greater depth on alternative migra-
tion methods utilizing gateways can be found in [BROD93].

5.2 DATABASE VIEWS

One very common method of data format hiding that deserves some mention is pro-
vided by the alternative views of data supported by relational database servers. A relational
database typically provides different views of its data to different sets of users in order to
support access security constraints, as well as to provide convenient organization of output

data. These views can hide the underlying logical database model; a user's view of a single
table schema, for example, can hide a logical model composed of multiple relations. Thus,
such views may be said to encapsulate the underlying logical structures, which may change
while the views are unchanged. However, this sort of encapsulation is quite limited within
an ordinary relational DBMS. Typically, user views are restricted to tables of data elements,

and the data elements themselves cannot have much structure, being restricted to standard
database types.

Thus, relational DBMS views do not ordinarily support information hiding or
encapsulation to the full extent found in OO systems. View mechanisms may still be useful
for providing a perspective on relational tables that makes them look like object attributes,
so that a relational DBMS may be used to store attributes of persistent objects. But the rela-
tional DBMS itself will not support the polymorphism or full data hiding capabilities of an
OO wrapper, a gateway, or an object model. Furthermore, a relational DBMS is, by design,
limited to accessing data from its own data stores. So, it does not provide the type of encap-
sulation that will support transparent transition to genuine 00 databases. Thus, the view
mechanism of a relational DBMS by itself does not, in general, support the type of data
encapsulation that will ease the migration of legacy databases. OO wrappers around rela-
tional DBMS tables, in contrast, support robust encapsulation of data, as discussed previ-
ously and in greater depth in Chapter 6.

37

6. WRAPPING IMPLEMENTATION

In this chapter, we elaborate on wrapping strategies using examples, and develop

guidelines on how they might be implemented in Ada. The examples presented here illus-
trate the specific code-level details for a specific system environment. For similar environ-
ments, these example codes may serve as templates since all code has been tested and
verified. In other cases, the examples illustrate a variety of code-level techniques for wrap-
ping which may be applicable depending on the environment.

Since Ada 95 does not have validated compilers at the time of this writing, all 00
migration examples here are implemented in Ada 83 which has readily available validated
compilers. Due to the general upward compatibility, most of the example code should exe-
cute under any validated Ada 95 compiler. Because Ada 83 is not a fully object-oriented
language but only object based, certain aspects of the 00 features of inheritance and poly-
morphism have to be explicitly coded. The various alternatives for coding OO features in
Ada 83 are explained in [IDA95b]. Most of the legacy application examples used here are
based on Cobol, the dominant information processing language of the past several decades.
Examples using Fortran, C, and Assembler are also included because they too have been
used in implementing legacy systems.

This chapter begins by examining various constraints that existing DoD legacy sys-
tems may impose on migration systems when attempts are made to retain some parts of
them. Then the basic prerequisites for any particular application of wrapping technology
are reviewed. Program functions are the first class of software components whose wrapping
implementation is described. Several examples of wrapping using Ada interface pragmas
are given for functions or subprograms written in the Cobol, C, and Fortran languages.
Next, a simplified scenario is presented of a legacy migration situation as a basis for illus-
trating wrapping techniques. Details are provided on wrapping a data file and a program
from the legacy system using Ada interface pragmas. Complete code for this example is
provided for reference in Appendix A.

39

When interface pragmas from Ada to a legacy programming language are not sup-
ported by the migration environment, alternative techniques exist to support this interface.
Several such techniques are described: use of common areas to exchange information, calls
through operating system services, and calls through intermediate languages. Next, the
details of wrapping databases, focusing on the interface between Ada and SQL are dis-

cussed. Finally, we describe the basics of the new language bindings in Ada 95 which great-

ly simplify the interfaces to foreign languages, easing the implementation of wrapping in
Ada.

6.1 LEGACY ENVIRONMENT CONSTRAINTS

Large portions of DoD legacy systems include obsolete hardware, technology, and

systems which were designed almost 30 years ago and are often poorly documented. A
sample of several legacy information systems are listed in Table 1. Many of these decades-

Table 1. Examples of Legacy Environments

System Languages Data Handling
Systems

Operational
Environment

Defense Civilian Personnel Data
System

Burroughs
assembly and
home-grown
procedural lan-
guage: Samuel

Home-grown
database
management
system

Multiple
sites using
remote
access

Defense Civilian Pay System Cobol IDMS/R

Marine Corps Total Force System Cobol and
Assembly

VSAMand
Adabase

Composite Health Care System MUMPS Fileman

Medical Performance Factors MUMPS Fileman

old designs are pushing the limits of their engineered capabilities and, as such, cannot be
readily adapted to open architectures and current technologies. For example, many of the
systems use memory overlays managed by the application program. Although innovative
at the time, such memory management techniques make it very difficult to adapt to new
architectures and technologies since many contemporary system architectures do not sup-
port the older memory overlay technique. Such constraints in legacy systems create special
challenges when migrating them to new platforms without massive reengineering. The soft-

40

ware wrapping technology may offer cost-effective solutions during rapid turnaround mod-
ernization for some legacy systems. Other legacy systems, however, may be too enmeshed

in obsolete technology for wrapping within modernized software and hardware environ-
ments.

Decisions about whether and how to wrap various components of a legacy system

will depend on the system-specific situation in addition to general criteria outlined previ-

ously. For example, legacy systems written in Cobol for IBM hardware and networking
relied heavily on the Customer Information Control System (CICS) communication pack-
age which is embedded in the operating system. In such an environment, Cobol applica-
tions make calls to the operating system and supply the pointer for the data structure to

handle file system and/or terminal I/O. The CICS intern communicates with the hardware
and I/O managing the terminal and fde system. Such operating system dependencies are
found to be common in many legacy systems. When present, these dependencies can pose
difficulties during porting one or more parts of a legacy system to current generation plat-
forms. As a result, all such operating system dependent calls may have to be rewritten in
order to migrate a legacy system to a new platform.

Vendors like the Digital Equipment Corporation (DEC) and IBM often provided
extensions to high-level languages (e.g., Cobol, PL/1) to facilitate task and program man-
agement, terminal handling, database access, and I/O handling. Legacy applications tradi-
tionally relied heavily on these extensions to achieve high performance since many of these
extensions are not directly supported on migration platforms and may create potential bar-
riers to moving components of legacy systems. When a legacy system's Cobol extensions
are not supported on a migration system platform, the portions of code that use the old
extensions will have to be re-implemented before the legacy code can run under the migra-
tion environment.

When legacy systems are tightly coupled with the hardware, operating system,
communication system, terminal handlers, etc., of an obsolete legacy environment, it may

be best not to wrap their components within a modernized hardware-software environment.
In such cases, a client-server strategy should be applied if a suitable interface can be estab-
lished between the legacy system and the migration system. Under this approach, a legacy
system (or components thereof) could operate as a stand-alone client-server and interact
with other client applications using a messaging system.

An alternative approach can be based on identifying components of the legacy sys-
tem that had little to moderately complex system-specific barriers to wrapping and salvag-

41

ing them for use as wrapped components in a modernized 00 system. In this case, the
wrapped legacy functions and the new system will coexist in the same computer system.

Naturally, when a legacy system contains substantial system-specific barriers to wrapping,
this will result in less salvageable legacy code.

If a translator can be developed that flags system-specific portions of legacy code
and maps them into their equivalents in the migration system, much legacy code can be sal-

vaged and the development effort can be accelerated. In some cases, a fairly uniform and
semi-automatic translation procedure may be possible for porting code from a legacy envi-

ronment to a migration target environment. Currently, several domain-specific commercial
products are available to facilitate such porting.

The best approach for handling system-specific barriers to wrapping will obviously
depend on the specifics of the legacy system and its intended migration environment. Alter-

native approaches should be analyzed relative to the resources, costs, quality, interoperabil-
ity, and migration deadlines for a particular migration system.

6.2 WRAPPING PRELIMINARIES

Wrapping is a special activity of those software migration projects that incorporate
object wrapping technology. Thus, its success depends on the execution of several prelim-
inary stages of software engineering. A number of activities should be performed before
proceeding to the details of wrapping implementation:

• Perform functional process improvement (DoD Directive 8020.1).

• Select system migration strategy.

• Perform 00 analysis and 00 design, including object modeling.

• Select levels of abstraction for wrapping.

• Select specific wrapping candidates.

• Select OO programming strategy.

DoD policy [DOD92] requires that a functional process improvement exercise be
conducted before the initiation of all systems reengineering activities. Since migration of a
legacy system may involve reengineering in addition to wrapping, one may have to perform

a. functional process improvement exercise as well before finalizing selection of the candi-
date legacy components for wrapping. The results of functional process improvement may
affect the suitability of a legacy component wrapping candidate, based on the findings of

42

the exercise of its obsolescence or need for modifications. In general, legacy systems that
require extensive modifications are ordinarily poor candidates for wrapping, since modifi-
cation of such existing code and/or data might be just as costly or more so than a complete
reengineering of the system.

A system migration strategy determines the general guidelines for migration,
including the number of transition stages and the relative proportions of different transition
modes applied at each stage. Software wrapping is one of those transition modes, along

with reengineering, code modernization, and the simple retention of a legacy system com-

ponent. Alternative system migration strategies utilizing different mixes of transition
modes (as discussed previously in Chapter 3) are divide-and-conquer, divide-and-wrap,
unite-and-conquer, and one-shot rebuild.

Except for one-shot rebuild, all are incremental strategies, allowing modernization
to proceed in stages in which more legacy components are modernized at each stage. Wrap-
ping may be used as a part of any incremental strategy to encapsulate a legacy component
for ease of integration with the modernized components. Selection of a migration strategy
begins the determination of the extent of application of wrapping in the migration process.
Strategies like divide-and-wrap, for example, are committed to wrapping all legacy compo-
nents that are not reengineered at a particular stage. The migration strategy should also indi-
cate the type of wrapping planned, whether it is wrapping components as objects or
wrapping them as domain object models, as explained previously in Chapter 4.

00 analysis and design result in an object model that defines the intended object's
structure for implementation. This may involve OO analysis aimed towards process
improvement requirements, as well as reverse engineering of the legacy application (as dis-
cussed in Chapter 5). The object model may be developed to different stages of completion
during different phases of system migration based on the system's migration strategy. A
strategy that commits to wrapping with object models may result in a complete object mod-
el for the entire domain during the migration phase. Modifications to this initial object mod-
el are to be expected during the subsequent stages when previously wrapped components
are reengineered using 00 technology. This is typical of the successive refinement of
object models during any incremental 00 software development. Performing the initial 00
analysis for the entire domain may ease the transition from one stage to the next and mini-
mize the disruption to the initial model. Less comprehensive 00 analysis in the initial tran-
sition stage can lower the costs ofthat transition at the expense of greater overall costs due
to disruptions during the later stages. In any case, the extent of OO analysis performed prior

43

to wrapping can greatly affect the structure of wrappers created and the ease of subsequent
reengineering and integration of the content in those wrappers.

Two principal criteria must be considered in order to identify the candidates for
wrapping: Is the wrapping feasible and is it justified? Feasibility is determined largely by
the modularity of the candidate component and its support within the migration environ-

ment, as discussed previously in Chapter 4. Justification for wrapping, as contrasted with

reengineering a legacy component or leaving it untouched, depends on a wide variety of

factors, including quality of documentation on legacy component, departure of domain

experts, complexity or fragility of code, size of code, resource limitations, expiring hard-

ware and software contracts, and interoperability requirements.

Once a candidate for wrapping has been identified, the appropriate level of abstrac-
tion for wrapping must be determined: a subsystem might be wrapped as a single compo-
nent or wrapped as many separate parts; a program might be wrapped as a whole or
decomposed into multiple functions or procedures for separate wrapping; or a database
might be wrapped as a whole or its tables or files may be wrapped individually. Table 2,
"Wrapping Guidelines," on page 45, provides some general guidelines on wrapping a leg-
acy system at various level of abstraction. Decomposition of components and wrapping at

lower levels of abstraction offers the benefits of modularity though at the costs of higher
wrapping transition overhead. Wrapping many small functions, for example, could take
more time and effort than simply reengineering them for the new environment—therefore,
this approach is not recommended. More generally, the costs and benefits must be weighed

in determining a reasonable level of abstraction for wrapping each wrapping candidate. In
some cases, candidates may be rejected after all of the costs have been fully accounted for.

Actual implementation of wrapping requires selection of an 00 programming strat-
egy, including the programming language and the 00 style guidelines for implementing
classes and objects within it. Although Ada 83 supports encapsulation, the support for
inheritance is limited, and the support for polymorphism is deficient compared to most
object-oriented languages like C++ or Smalltalk. Thus, fully 00 programming within Ada
83 requires selection of implementation strategies for inheritance and polymorphism. It is
preferred for its high levels of encapsulation and modularity. Its main weakness lies in the
use of unchecked type conversion to extend class attributes in subclasses. The viability of
this technique depends on the Ada compiler implementation of data record modeling and

access types. However, this implementation dependency is not a problem for the majority

44

of Ada 83 implementations, and such code can ordinarily be ported between compilers
without modification.

Table 2. Wrapping Guidelines

Level of
Abstraction

Function

Procedure

Sub-Module

Module

Complete
System

Data File

Database

Wrapping Overhead - Comments

Overhead is very high. Not recommended unless the
function is unusually complex & difficult to re-code.

Overhead is high. Recommended but should initiate a
performance evaluation before implementation.

Low overhead. Recommended.

Overhead is moderate. Should consider the execution
environment.

Recommended. Should look at client-server model
during implementation.

Highly recommended. Relatively low overhead. Care
should be taken during data modeling in Ada.

Highly recommended. Select SQL interface or other
form of binding to database.

6.3 FUNCTION WRAPPING IN ADA

One of the simplest forms of wrapping is to call functions written in another pro-
gramming language. In most cases, individual functions are compiled and mapped under
the same operating environment using the same linker. The examples of this section illus-
trate how an Ada program calls a function or procedure that has been implemented in a dif-
ferent programming language. The structure of the various segment of the software is
shown in Figure 19 on page 46.

Developing an interface to an external function callable from Ada requires the fol-
lowing information:

• The name of the routine

• The type of the call required

• The data type of each parameter

• The type of access required for each parameter

45

The mechanisms needed to pass the parameters

Whether any of the parameters are themselves routines or the addresses of the
routines

Whether or not any parameters are optional

Ada package body

Ada package
specification

procedure X

function Y

pragma
Interface...

pragma
Interface...

Cobol/C/Fortran, etc.

procedure X

and/or

function Y

Figure 19. Calling a Wrapped Procedure/Function/Subprogram

Thus, one must transform the requirements in Ada terms, to create an equivalent
Ada subprogram specification and use the pragma INTERFACE and any relevant Ada
import pragmas to import the routine so that the programmer can call it as an Ada subpro-
gram.

Ada supports two types of subprograms:

• Procedures, which can have parameters that are updated within the body of the
subprogram.

• Functions, which return results but cannot update their parameters.

Wrapped routines must be imported into an Ada program before they can be used.
In Ada 83, a generic pragma is provided to enable the programmer to import a routine
developed in another programming language. The syntax of the pragma is

pragma INTERFACE {<Language_name>, <routine_name>)

46

The pragma specifies the other language (and thereby the calling conventions) and
informs the compiler that an object module will be supplied for the corresponding routine.

A body is not allowed for such a routine (not even in the form of a body stub) since the
instructions of the routine are written in another language.

Vendors often extend this feature and provide additional pragmas to facilitate the
bindings. For example, DEC Ada includes the following additional pragmas:

pragma IMPORT_PROCEDURE

pragma IMPORT_FUNCTION

When using this compiler, the pragma INTERFACE is used just to specify the name of the

external routine, whether its a function or a procedure. Then one of these compiler-specific

pragmas (IMPORT_PROCEDURE, or IMPORT_FUNCTION) is used to specify the
details of the imported routine and its connection with a corresponding internal routine.
More specifically, these pragmas include fields for both the internal and external routine
names, the data types of the parameter values, and the mechanism for passing parameter

values. The MPORT_FUNCTION pragma also supports specification of the result data
type. The examples of this section illustrate the use of these pragmas in wrapping external
Cobol code.

Because many system and utility routines return results and update their parame-
ters, DEC Ada provides an additional pragma specifically to import such subprograms. For
example, in DEC Ada, the pragma IMPORT_VALUED_PROCEDURE in combination
with the pragma INTERFACE enables the user to write an Ada interface that will import a
routine so that it is interpreted as a procedure in the Ada environment and as a function in
the external environment.

6.3.1 Example 1: "Employee_Taxable"

An example of function wrapping is shown in Figure 20 on page 48. In this exam-
ple, an Ada procedure calls a function TAX_CALC written in Cobol. The calling procedure
passes two parameters, Empjncome and Emp_Deduction, to the called function. The
called function then performs the calculation and returns the result. Integer data types are
used for the purpose of simplicity. Cobol can support complex data types which can then
be specified in Ada. Additional packages, such as ADAR (Ada Decimal Arithmetic and
Representatives) developed by the Ada Joint Program Office, can be used to support data
types not predefined in Ada.

47

Ada program

Employee_Taxable

Tax Calculation

function TAX_CALC
pragma Interface
pragma ImportJFunction

Cobol program

TAX CALC

Figure 20. Function Wrapping Example in Ada.

The interface components of the calling Ada program are listed as follows:

with...;

package body Employee_Taxable is

function TAX_CALC (EMP_INCOME, EMP_DEDUCTION: integer)

return integer;

pragma INTERFACE (Cobol, TAX_CALC);

pragma IMPORT_FUNCTION (

INTERNAL => TAX_CALC,

EXTERNAL => TAX_CALC,

RESULT_TYPE => INTEGER,

PARAMETERJTYPE => (INTEGER, INTEGER),

MECHANISM => (REFERENCE, REFERENCE));

function Tax_Calculation (Self : in Class) return Employee.Money
is

Salary : constant Employee.Money := Emp_Salary (Self);

Emp_Income : constant Integer := Integer (Emp_Salary (Self));

Emp_Deductions : constant Integer := Deductions (Self);

begin

return Employee.Money (Tax_Calc (Emp_Income, Emp_Deduction));

48

end Tax_Calculation;

and EmployeeJTaxable;

The called Cobol program is as follows:

IDENTIFICATION DIVISION.

PROGRAM-ID. TAX_CALC.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 INCOME-TAX PIC

01 TAX-RATE-1 PIC

01 TAX-RATE-2 PIC

01 TAX-RATE-1 PIC

LINKAGE SECTION.

01 EMP-INCOME PIC

01 EMP-DEDUCTION PIC

PROCEDURE DIVISION USING

EMP-INCOME EMP-DEDUCTION GIVING INCOME-TAX.

9(9)

9V99

9V99

9V99

9(9)

9(9)

COM P.

VALUE

VALUE

VALUE

COM P.

COMP.

BEGIN.

ELSE

ELSE

0.16.

0.28.

0.31.

IF EMP-INCOME <= 20000

COMPUTE INCOME-TAX =

(EMP-INCOME - EMP-DEDUCTION * 2500) • TAX-RATE-1

IF EMP-INCOME > 20000 AND <= 40000

COMPUTE INCOME-TAX =

(EMP-INCOME - EMP-DEDUCTION * 2500) * TAX-RATE-2

COMPUTE INCOME-TAX =

(EMP-INCOME - EMP-DEDUCTION * 2500) * TAX-RATE-3.

EXIT PROGRAM.

6.3.2 Example 2: "Payroll"

This example is similar to Example-1 and here the type of the passed parameters is
the character type.

Ada implementation for Payroll.Generate_Report routine is as follows:

package body Payroll is

49

procedure REPORT_HEADER (TITLE: in out STRING);

pragma Interface (Cobol, REPORT_HEADER);

pragma Import_Procedure (

INTERNAL => REPORT_HEADER,

EXTERNAL => REPORT_HEADER,

MECHANISM=> (Reference, Reference));

— Procedure to call Cobol routine

procedure Generate_Report is

Title: constant STRING(1.10) := "Division ";

begin

PAY_REPORT(Title);

end Generate_Report;

end Payroll;

The template for the wrapped Cobol program is as follows:

IDENTIFICATION DIVISION.

PROGRAM-ID. REPORT_HEADER.

DATA DIVISION.

LINKAGE SECTION.

01 REPORTTITLE PIC X(10).

PROCEDURE DIVISION USING REPORTTITLE.

BEGIN.

DISPLAY "Report for" report_title.

The actual report generating code is not listed for reasons of simplicity.

EXIT PROGRAM.

6.3.3 Example 3: "Math.Library"

In this example an Ada calling program call function is written in other native-mode

languages. Simple integer addition is shown in the example, although any specialized math

calculation could be wrapped similarly.

—Wrap a Math Library-

package body Math_Library is

function GETSUM (A, B: Integer) return Integer;

pragma INTERFACE (FORTRAN, GETSUM);

50

pragma IMPORTJFUNCTION (

INTERNAL => GETSUM, — Ada name

EXTERNAL => GETSUM, — external name

RESULT_TYPE => INTEGER,

PARAMETERJTYPES => (INTEGER, INTEGER),

MECHANISM => (REFERENCE, REFERENCE));

function "+"(A, B : Integer) return Integer is

begin

return GETSUM (A, B);

end M+";

end Math_Library;

The Fortran-based called routine is as follows:

FORTRAN FUNCTION

integer function GETSUM (I, J)

C FUNCTIONAL DESCRIPTION:

C

C This FORTRAN function calculates the sum of 2 integers

C

GETSUM = I + J

end

i

! This BASIC function calculates the sum of 2 integers
j

BASIC FUNCTION

function integer GETSUM (integer A,B)

GETSUM = A + B

functionend

; This MACRO function calculates the sum of 2 numbers

MACRO FUNCTION

.ENTRY GETSUM, AM<> ; null entry mask

51

CLRQ RO ; clear RO and Rl

ADDL3 @4(AP), @8(AP), RO ; obtain sum

RET

.END

6.4 EXAMPLE SCENARIO

The main goal is to extend the life of an existing Cobol system that maintains com-
pany employee payroll information. This legacy system performs tax calculations, creates

summary reports by departments and for the entire organization, and prints the reports. An

additional goal is to facilitate the addition of new functions, such as printing employee

checks. Figure 21 illustrates the architecture of this legacy system along with the planned

00 system that will wrap it. The new system will generate the same reports and migrate to
Ada. The first of several enhancements is to add the printing of payroll checks.

{EL
Employee

Information

Legacy System

Tax Calculation

V

:<CL ■ ■ ■
Tax Calculation

Report

Checks

^

LZL

00 System Developed

Figure 21. Wrapping of Scenario Legacy System

6.4.1 Legacy Program Scenario

The example legacy Cobol program finds data from the file TESTP.DAT and per-
forms the tax calculation based on the status of the employee and number of deductions. It
does not calculate any tax if an employee is a consultant. This input file contains ASCII
text, as do the output files.The software generates a detailed report organized by depart-
ment, including the name of the employee, the income, employment status, department

number, number of dependents, and tax deducted from the employee's pay check,. It also
prints out the total payroll and taxes for departments and for the company. The output of

52

the legacy system is written to the file PRINTER.DAT. The legacy program code is provid-
ed in Appendix A, Section A.l, along with the sample data file for input and output.

6.4.2 Migration Program Scenario

The new program will create the same detailed report, and print checks. If the
employee is a consultant, the check is addressed to the home mailing address. Other
employees receive their checks at work, and the checks are addressed to their departments.

Check numbers are printed on the checks. The date printed on the checks is taken from the

system date, and the name and net pay are provided by the legacy system using the existing
program.

The migration program must be ready to accommodate a number of foreseeable
changes. Some future enhancements may replace the input data file with an interface to a
database. The company may begin using temporary employees provided through temp ser-
vices. In addition, Accounting is looking into ways to authorize direct deposit transfers.

6.4.3 Object Model Scenario

Regardless of the language, the desire to migrate to an 00 paradigm requires an
object model. OO analysis of the relevant parts of the existing system and the potential
enhancements produces an object model. The new architecture is represented via two mod-
els, namely, object model and dynamic model. Figure 22 on page 54 illustrates an object
model diagram for the desired system.

The dynamic model that prints checks is illustrated by the object interaction dia-
gram in Figure 23 on page 55. The other interaction is to generate the report. Depending on
the OO methodology, these two interactions may be dependent on each other. For example,
if the checks are printed based on the output of the report, then the report must obviously
be printed first. However, if the checks are printed by reading the input file and invoking
the Cobol tax calculation code to determine net pay, then no dependency exists.

6.4.4 Wrapping a Data File Scenario

Almost all legacy systems use file systems. Files are often used to exchange data
from one part of the application to another part. Therefore, one approach to wrapping a leg-
acy system is to pass data through the file system, and invoke the legacy code either from
the operating system or through APIs.

53

Payroll Employee_File

DB : Employee_File

Starting_Check_Number

Accesses Ä
End_of_File

Open (Path_Name)
Close
Get_Next (Employee)

9

Generate_Report
Set File Name
Set_Starting_Check_Number
Print_Payroll

Includes

1

Employee
Authorizes

>

Name: String (1..25)
SS_No: Number
Status
Department
Salary: Money

Check

Number
Date

Pays
• ' »

Net_Pay {abstract}
Send_Check_To {abstract}

Print

A
Consultant

Mail_Address: String
Taxable

Tax: Employee.Salary
Deductions Net_Pay

Send_Check_To Net_Pay
Tax_Calculation
Send_Check_To

Figure 22. Object Model

The interaction between the legacy system originally developed in Cobol and how
it is wrapped by an Ada 83 based 00 system is shown in Figure 21 on page 52. The legacy
system is invoked from the new system, and the report is used to populate the objects in the
new system. The migration system is designed using OO concepts and implemented in Ada
83. The class-wide operation, Print_Checks, is used to illustrate run-time dispatching in
Ada. The package specifications and package bodies are listed in Section A.2 of Appendix
A.

54

Payroll
Employee

File

Set_File_Name

Set_Starting_Check_Numbei Get_Next (Employee)

Print_Payroll

Do

While not End_Of_F0e

Employee Check

Open (Path_Name)

Construct (Date, Num)er, Employee)

Print

Close

Construct (...)

Figure 23. Interaction Diagram

GetName

GetSSN

Get_Address

Net_Pay

55

6.5 INTERFACING TO EXTERNAL CODE

Support for interfaces to other languages using pragmas depends on the features of

the Ada compiler and the implementation language of the "external code." The DEC Ada

compiler used during the previous examples provides good interface support for many pop-

ular programming languages. Other compiler vendors may not provide such features in

their environments. An alternative means of interfacing to "external code" may be required
to achieve the same type of wrapping of legacy code within an 00 system written in Ada.
Three techniques for interfaces between Ada and foreign code are as follows:

• Interfacing via operating system

• Sharing common storage areas

• Interfacing through an intermediate programming language

When compiler pragmas are not available from Ada to a target language, then in
most cases the compiler may support a set of APIs through which operating system services
can be accessed. In such cases the operating system will invoke a separate software module
implemented in another language.

When external function calls are not supported by the target Ada implementation,
then sharing of information via common storage to exchange information between the

called and the calling module can become a viable option. Programming languages like
Fortran utilize common memory areas to exchange information among various software
module during runtime. For time-critical applications, common memory can be utilized to
transfer data between the called program developed in Ada to the calling legacy software
developed in Fortran.

An intermediate programming language can provide another means to call foreign
language code when an interface to the target code language is not directly supported by
Ada compiler. In Unix systems, the C programming language often plays the role of an
intermediate language since it is ordinarily supported within any Unix environment. Sever-

al examples are provided in the following subsections that implement the aforementioned
techniques.

6.5.1 Operating System Interface

One way to establish a link from an Ada program to a block of legacy code written
in another language, such as Cobol, is to interface through the underlying operating system.
This form of wrapping is illustrated in Figure 24 on page 57. The figure shows an Ada pro-

56

Ada Program

Wrapper object

operation_1
operation_2.

zs:

calls

UNIX System calls

Cobol/C/Fortran/..
Program

Figure 24. Linking via a Unix Shell

gram composed of an object wrapper and other related objects, with one of the wrapper
object operations (operation_2) making a call to the Unix operating system which, in turn,

executes an external program which could have been written in any supported program-
ming language, such as Fortran, C, or Cobol.

Executing operating system (or shell) commands from within a program requires
careful definition of the appropriate system calls to ensure format compatibility. Any such
commands will naturally be environment dependent on such things as the compiler and
operating system being used. For the purpose of illustration we define a package
Unix_Shell_Commands that includes several basic commands for interacting with the oper-
ating system, all of which utilize externally defined C functions and data type definitions
from the library package System. This package declares three basic operations, namely,
UnixJShell, Get_Unix_Environment_Variable, and Get_Unix_Process_Id.

package Unix_Shell_Commands ia

procedure Unix_Shell (and: in String; status: out Integer);

— Execute the input string as a Unix shell command and return the

— command's execution completion status.

— A status value of zero usually

— indicates successful command completion.

function Get_Unix_Environment_Variable (Name: in String)

57

return String;

— .Retrieve the value of the named Unix environment variable.

function Get_Unix_Process_Id return Integer;

-- .Retrieve the value of the program's process ID.

end Unix_Shell_Commands;

The body of the package then implements the operations beginning with a set of
external C functions that are accessed via the Interface pragma, followed by the exported
operations that utilize these external C functions:

with System; use System;

package body Unix_Shell_Commands is

Unix_Null_Address: constant Address:= NO_Addr;

 Following are external C function that are imported: —
.Retrieve the value of a Unix environment variable.

— Unix System library function.

function getenv (Address_Of_Name_With_Null: in Address)

return Address:

pragma Interface (C, getenv);

— .Retrieve the current program's Unix process ID.

function Getpid return Integer;

pragma Interface (C, getpid);

— Find the length of the multi-terminated string

function strlen (Address_Of_String_With_Null: in Address)

return Integer;

pragma Interface (C, strlen) ,-

— Execute a Unix Shell command

function System (Address_Of_Cmd_With_Null: in Address)

return Integer;

pragma Interface (C, system);

— utility to map the address of a string to a string result

— .Retrieve the Ada string value of a Unix null-terminated string

— Note: Raises Storage_Error if address is null.

function To_string (Address_Of_First_Char: in Address)

return String is

Result : String (1 .. strlen (Address_Of_First_Char));

for Result use at Address_Of_First_Char;

58

begin

return Result;

end To_string;

 Following are the definitions for functions exported from this
 package:

function Get_Unix_Environment_variable (Name : in String)

return String is

— .Retrieve the value of the named Unix environment variable.

Name_With_Null : constant String (1 .. Name'Length +1) :=

Name & ASCII.Null;

Env_Var_Address : constant Address:=

getenv (Name_With_Null(l)'Address);

begin

if Env_Var_Address = Unix_Null_Address then

return **;

else

return To_String (Env_Var_Address);

end if;

end Get_Unix_Environment_Variable;

function Get_Unix_Process_Id return Integer is

begin

return getpid;

end Get_Unix_Process_Id;

Procedure Unix_Shell (Cmd : in String; Status : out Integer) is

— Execute the input string as a Unix shell command and return the

— command's execution completion status. A status value of zero

— indicates successful command completion.

Cmd_With_Null : constant String(1 .. Cmd'Length +1):=

Cmd & ASCII.Null;

begin

Status:= System(Cmd_With_Null(1)'Address);

end Unix_Shell;

end Unix_Shell_Commands;

59

Note: The calling external programs in Unix_Shell take a string name of an external pro-
gram as input and append a null character at the end before passing its address to the C
function System which initiates execution of the code beginning at that address. It must
also be noted that code interfacing a compiler to an operating system is ordinarily system
specific, depending upon both the operating system and the compiler. This particular code

was tested on only one combination of compiler and operating system. It illustrates the
basic interface concept, although distinct code may be required for different compilers and
operating systems.

6.5.2 Common Storage Areas Interface

When external code is called from Ada without the benefit of direct return values

(as when executed via a Unix shell command), it may be necessary to provide some other

means of communicating results from the external code to the Ada program. One obvious
approach consists of simply writing the results from the external code to a file and reading
those results back from the file after Ada resumes control. Writing and reading files, how-
ever, entails substantial overhead costs and may adversely affect the system's performance.
An alternative is provided by some Ada compilers (e.g., DEC Ada) in the form of a pragma
identifying certain data as defined in a common storage area accessible from other pro-
grams, as illustrated in Figure 25.

Ada Program

Wrapper object

operation_1
operation_2.

s:

Operating
System calls

Cobol/C/Fortran/..
Program

Figure 25. Interfacing Using a Common Area

60

In DEC Ada, the syntax for pragma for defining a common areas is as follows:

pragma COMMON_OBJECT (<internal_name> [, external_designator]
t, [SIZE =>] external_symbol]);

This pragma can be used to associate Ada storage with Fortran or Basic common blocks,

Pascal variables declared with the COMMON or PSECT attribute, and EXTERNAL vari-
ables in PL/I or variables declared with the EXTERN declaration in C programs.

The following example illustrates how to share one storage area with several For-
tran common variables with Ada record variables, where each field of the record corre-
sponds to one Fortran variable.

C FORTRAN declarations:

INTEGER DAY, MONTH, YEAR

CHARACTER*20 NAME

COMMON //BDATE/DAY, MONTH, YEAR // NAME

END

— Corresponding Ada declarations;

package Birthdate_Interface is

type DATE is

record

DAY, MONTH, YEAR: INTEGER;

end record;

subtype NAME is STRING (1 .. 20);

procedure Next

(Birthdate : out Date;

Account_Name: out Name);

end Birthdate_Interface;

package body Birthdate_Interface is

BDATE: DATE;

ACCTNAME: NAME;

pragma COMMON_OBJECT (BDATE);

pragma COMMON_OBJECT (ACCTNAME, W$BLANK");

procedure Next

61

(Birthdate : out Date;

Account_Name: out Name) is

begin

Birthdate := BDATE;

Account_Name := ACCTNAME;

end Next;

end Birthdate_Interface;

6.5.3 Intermediate Language Interface

A wrapped object can be called via an intermediate language that has a binding to

Ada. Today, several vendors provide a binding to C. Thus, an Ada object can call a C func-

tion which in turn can call a Cobol/Fortran object. Such a wrapping strategy is illustrated
in Figure 26.

Ada Program

Wrapper object

operation_1
operation_2.

-z:

calls

C function

Fortran/Cobol.
Program

Figure 26. Interfacing via an Intermediate Language

6.5.3.1 Calling C from Ada

An example follows of wrapping a C function in Ada, which was implemented on
the Suns using the Verdix Ada. A key thing to note is that Ada strings have their lengths

managed separately, but C strings are terminated with '\0\ so any program passing strings
has to do a conversion. System Address is used in this example, and usually it is desirable
to avoid doing that, but it was a simple way to implement this.

62

package Distance_Wrapper is

function Distance (Left : String; Right : String) return Float;

end Distance_Wrapper;

with System;

package body Distance_Wrapper is

— Here's the declaration of the C "wrapped' function & types.

function Miles_Distant(Cl : System.Address; C2 : System.Address)

return Float;

pragma Interface(C, Miles_Distant);

— Ada Language RM 13.9(4) allows limiting the types passable.

— Verdix requires parameter types to be scalar, access or
— SYSTEM. ADDRESS

Miles_To_Kilometers : constant := 1.61;

function Distance (Left : String; Right : String) return Float is

Miles : Float;

Cl : String (1..Left'Last+1);

C2 : String(1..Right'Last+1) ;

begin

Cl(l..Left'Last) := Left; Cl(Left'Last+1) := ASCII.Nul;

C2(l..Right'Last) := Right; C2(Right'Last+1) := ASCII.Nul;

Miles := Miles_Distant(Cl'Address, C2'Address);

return Miles * Miles_To_Kilometers;

end Distance;

end Distance_Wrapper;

6.5.3.2 Calling Fortran from C

Vendors generally place restrictions during interlanguage calls. For example, in
VAX when one calls an external routine as a function, a single value is returned. When one
calls an external routine as a subroutine (a VOID function), values are returned in the argu-
ment list. By default, VAX C passes all arguments by immediate value with the exception
of arrays and functions; these are passed by reference.

The example that follows shows a VAX C function calling a VAX Fortran subpro-
gram with a variety of data types. This example does not extend the previous one to illus-
trate the full concept of calling from Ada through C to Fortran, however, since an

63

environment supporting this full interface chain was not available to the authors at the time
these examples were developed.

For most scalar types, VAX Fortran expects arguments to be passed by reference but
character data is passed by descriptor:

/*

/* Beginning of C function

/*

#include <stdio.h> /* get layout descriptors */

#include <descrip.h> /* declare FORTRAN function */

extern int fort();

main()

{ int i = 508;

float f = 649.0;

double d = 91.5;

struct {

short s;

float f;

} s = {-2, -3.14};

auto $DESCRIPTOR (stringl, "Hello, FORTRAN");

struct dsc$descriptor_s string2;

/* "stringl" is a FORTRAN-style string declare and initialized

/* using the $DESCRIPTOR macro.

/* string2 is also a FORTRAN-style string, but here we are

/* declaring and initializing by hand */

string2.dsc$b_dtype = DSC$K_DTYPE_T; /* type is character */

string2.dsc$b_class = DSC$K_CLASS_S; /* string descriptor */

string2.dsc$w_length =3; /* 3 characters */

string2.dsc$a_pointer = "bye"; /* pointer to string value */

printf (»FORTRAN result is %d\n, fort (&i, &f, &d, &s, istringl,

&string2));

}

/* end of C program */

C

C Begin the FORTRAN subprogram

64

INTEGER FUNCTION FORT (I, F, D, S, STRING1, STRING2)

INTEGER I

REAL F

DOUBLE PRECISION D

STRUCTURE /STRUCT/

INTEGER*2 SORT

REAL FLOAT

END STRUCTURE

RECORD /STRUCT/ S

C We can tell the program to use the length in the descriptor

C or we can tell the program to ignore the descriptor and

C assume the string has a particular length as done for

C string2.

CHARACTER*(*) STRING1

CHARACTER*3 STRING2

WRITE (5, 10) I, F, D, S.SORT, S.FLOAT, STRING1, STRING2

10 FORMAT (IX, 13, F8.1, D10.2, 17, F12.2, IX, A, 2X, A)

FORT = -15

RETURN

END

6.6 WRAPPING A DATABASE MANAGEMENT SYSTEM

Many legacy information management systems relied on databases to organize, pro-
tect, and store their data. Such database systems might have been designed by the in-house
developers or might have been procured from commercial vendors. In either case, they
were developed using the basic principles of DBMSs. Within DoD, a large number of leg-
acy systems rely heavily on DBMSs to store and manage their data. Thus, the systems

designers will have to provide a mechanism to encapsulate the legacy systems's DBMS.
Today, most databases utilize some form of SQL to interface between an application and a
DBMS. Although Ada 83 does not provide a direct binding to DBMS or SQL, one approach
is to create a general binding following McCoy's strategy [MCC90]. The basic elements of
the strategy include the following:

• Creation of Ada data type

• Interfacing to the external routines

65

• Interfacing to external data

• Linking to external library

Data types in Ada must be created to match those supported by the particular bind-
ing. This may require the use of an Ada representation clause to map a user type to one of
the primitive types available in the SQL.

One can develop Ada subprogram specifications to match those of the interface lan-
guage. A proper interface is then declared to map the Ada templates to the binding routines.
This may be accomplished via pragma interfaces described earlier.

Interfacing to external data may involve the development of special routines that
return the required data objects as parameters with proper format.

Linking to external library is implemented if a set of Cobol or C routines is available
as a part of a library that provides a binding to DBMS. In such cases, proper linkage can be
established by linking to available library routines.

6.6.1 SQL to Ada Binding

SQL has emerged as the industry standard for a relational data access language.

SQL defines a common relational database language that enables consistency across prod-
uct implementations, in the way users, application developers, and to some extent database
designers interface with the products. Although internal mechanisms for representing and
accessing database structures may vary greatly, SQL allows users to deal with one syntax
for invoking those mechanisms.

The major problem with creating an SQL binding is that the developers of applica-
tion software are now faced with two entirely different programming paradigms. A large

amount of application software is procedural and functionally oriented, whereas the SQL
part is used to model the relational algebra required for the database queries. SQL does not
support the strong typing used in Ada; consequently, the application developers either use
the limited set of types or must perform some form of a transformation.

The Ada community identified three viable options for implementing an Ada bind-
ing to SQL [SEI91, DON87]:

• All-Ada binding. SQL queries are modeled with standard Ada statements. For
example, a relation expressed in SQL as a table will create an Ada record type.

66

In this case, SQL reserved words, such as select and all that are also Ada
reserved words, are renamed in the Ada model.

• Embedded SQL. The SQL statements are included in the Ada application code
to express the relations required for accessing the DBMS. A pre-processor is

then used to translate the SQL statements to their equivalent Ada procedure
calls that will actually make the queries to the DBMS.

• New language. To avoid the mixing of Ada and SQL, a new programming lan-

guage SAMeDL (SQL Ada Module Description Language) has been proposed
[SEI91], The goal is to bridge the gap between Ada application oriented pro-

gramming and SQL DBMS accesses. The SAME methodology requires that
SQL statements be separated from the Ada application code and encapsulated
in separate modules. The SQL statements are not embedded in the Ada packag-
es, thus isolating the Ada application from the DBMS design and implementa-

tion. SAMeDL is designed to facilitate the construction of Ada database
applications that use the SAME methodology.

These three techniques have their unique advantages and disadvantages, and the
developer can only select the most appropriate approach suitable to the environment and
application.

6.6.2 All-Ada Bindings

Today, many DBMS and Ada compiler vendors support the all-Ada bindings tech-
nique. The name of the Ada package specification is identical to the name of the SQL mod-
ule. The procedures declared by the Ada specification have names identical to the
corresponding procedures declared within the SQL module. The formal parameters of the
procedures have names identical to those of the SQL module.

This technique is illustrated via an example which accesses a Parts-Supplier data-
base [DATE75]. The simple SQL module contains a cursor declaration and the procedures
open, fetch, and close. The Ada specification module contains the corresponding package
specification. The Ada package Example_Definitions is a domain package in the terminol-
ogy of [GRAH89], and represents a definitional module in the terminology of [CHAS90].

Module Example_Module

Language Ada

Authorization Public

67

Declare Part_City Cursor

For

Select SP.PNO, S.City

From SP, S

Where SP.SNO = S.SNO

And S.Status >= Input_Status;

Procedure Part_City_Open

Input_Status Int

SQLCODE;

Open Part_City;

Procedure Part_City_Fetch

Part_Number Char (5)

City Char (15)

City_Indic Smallint

SQLCODE;

Fetch Part_City into Part_Number, City INDICATOR City_Indic;

Procedure Part_City_Close

SQLCODE;

Close Part_City;

The specification of the Ada interface for the above SQL module is as follows:

with Example_Definitions; use ExampleJDefinitions;

package Example_Definitions is

type Part_Nbr_City_pairs is

record

Part_Number : Part_Number_Not_Null;

City : City_Type;

end record;

procedure Part_City_Open (Input_Status : Status_Not_Null);

— creates the relation of part numbers and cities where there
— exists some

-- supplier, with status at least LowerJSound, of that part in -
— that city.

procedure Part_City_Fetch (

Part_Cities:in Part_Nbr_City_Pairs;

68

Is_Found : out Boolean);

— .Returns the relation created by open

— Found becomes false at end of table

procedure Part_City_Close;

— Clean up procedure

end Example_Interface;

The parameters to be passed between the application program and the SQL module
should be carefully defined because in Ada the type equivalence is determined statically by
name. The application program and the corresponding database management package must
agree on the names as well as the structure.

6.6.3 Embedded SQL

Embedded SQL deals with the placement of SQL language constructs in procedural
language code. Every vendor treats embedded SQL statements in a different way. For
example, in Oracle's ProAda, software developers embed SQL statements directly in the
Ada program and then precompile the source. Precompilation causes the embedded SQL to
be translated into ProAda calls, including the runtime library procedures that handle the
interaction between the application software and the Oracle relational DBMS.

For example, if the application wants to issue the following statement:

SELECT enaihe, sal

FROM emp

WHERE empno = &EMP_NUMBER

The equivalent embedded SQL statement in ProAda would be as follows:

EXEC SQL SELECT ename, sal

INTO:EMPLOYEE_JJAME, :EMPLOYEE_SALARY

FROM emp

WHERE empno = :EMP_NUMBER;

In this case, the program must supply a valid employee number, placing it in the Ada host
variable EMP_NUMBER, which must be declared and be in the scope of the embedded
SQL statement. When the statement is executed, the name information and salary infor-
mation that satisfy that query are placed into the Ada host variable EMPLOYEE_NAME
and EMPLOYEE_S ALARY.

The following example is a simple Ada program that connects to an Oracle DBMS;
gets and prints the maximum employee number in the EMP table; selects and prints the

69

department name for a user-provided department number, or prints an error if no such
department number exists; and exits [ORCL92].

- SIMPLE:

with text _io;
- Note: the precompiler "with's" the required ORACLE packages

procedure SIMPLE_SAMPLE is
use textjo;

declare host and program variables
ORACLEJD
ENAME
ENAMEJ.EN
DEPT_NAME
LOCATION

constant String := "SCOTT/TIGER";
String (1..20);
Integer;

String (1..14);
String (1..13);

SQL_ERROR exception;
SQL_WARNING exception;

- Check to see if the last database
- operation returned any rows.

function EMPLOYEEJEXITS return Boolean is
begin

return (not (ORACLE.ERROR.IF_NOT_FOUND));
end EMPLOYEE_EXITS;

begin - SIMPLE_SAMPLE
- Direct the precompiler to insert "if logic that
- checks the ORACLE return code and raises an exception
- if needed.

EXEC SQL WHENEVER SQLERROR raise SQL_ERROR;
- Check for warnings, such as data truncation, also.
EXEC SQL WHENEVER SQLWARNING raise SQL_WARNING;

~ Connect to ORACLE

EXEC SQL CONNECT :ORACLE_ID;

NEWJJNE;
PUT_LINE ("Connected to ORACLE as " & ORACLEJD)-
NEWJJNE;

PUTJJNE ("*** ORACLE DEMO #1 *"");
NEWJJNE;

loop
PUT ("Enter employee last name (CR to exit):";
GETJJNE (ENAME, ENAMEJ.EN);

70

exit when ENAMEJ.EN = 0;

- SELECT statements that return one row can use a
- simple SELECT statement. Otherwise, a cursor must be
- declared for the SELECT, and a FETCH statement is used.

EXEC SQL SELECT INITCAP (loc), INITCAP (dname)
INTO LOCATION, :DEPT_NAME
FROM emp, dept
WHERE deptdeptno = emptdeptno
AND EMP.ENAME =

(upper (:ENAME(1 ..ENAMEJ.EN));

if EMPLOYEE_EXITS then
NEWJJNE;
PUTCEmployee");
PUT (ENAME(1..ENAME_LEN));
PUT (" works for department" & DEPTJMAME);
PUT (" in "& LOCATION);
NEWJJNE; NEWJJNE;

else
PUTJJNE(

"Sprry, no such employee (try ALLEN or JONES)");
NEWJJNE;

end if;
end loop;

NEWJJNE;
PUTJJNE ("Bye-by.");

- Disconnect from the database.
EXEC SQL COMMIT RELEASE;

exception
~ Turn off error checking, since we do not want
- to raise an exception when logging out under
- any circumstance.

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL WHENEVER SQLWARNING CONTINUE;

when SQLJERROR =>
PUTJJNE (" ** ORACLE ERROR OCCURRED **");
NEWJJNE;
PUTJJNE (ORACLE.ERROR.MESSAGE);
EXEC SQL ROLLBACK RELEASE;

when SQL.WARNING =>
PUTJJNE (" " ORACLE WARNING OCCURED •-);
NEWJJNE;
EXEC SQL ROLLBACK RELEASE;

end SIMPLE_SAMPLE;

71

Today, most of the database vendors such as Sybase, DEC, IBM, and Informix pro-
vide embedded SQL for their Ada compilers or offer such capabilities though their technol-
ogy partners.

6.6.4 SQL Ada Module Description Language

The primary objective for SAMeDL is the partial creation of Ada DBMS applica-
tions where Ada applications are written without any mixed SQL statements, and SAMeDL

modules are written to model the SQL queries. SAMeDL defines an abstract interface, a
collection of Ada declarations through which an Ada program can access the DBMS. The

meaning of a SAMeDL text is given by a translation into an Ada text, an SQL text, or both
an Ada and an SQL text along with the relationship between them.

Figure 27 illustrates an overview of the SAMeDL architecture. A SAMeDL text

SAMeDL

Ada Type and
Procedure

Declaration

I

Data Description

SQL Procedure

Ada Application
Database

Figure 27. The Meaning of SAMeDL Text

may contain some data descriptions and it may also rely on previously processed data
descriptions. The meaning of SAMeDL text may include Ada type and/or subprogram dec-
larations. The actions of the subprograms nominally include calls to procedures defined in
the SQL module language. The meaning of a SAMeDL procedure includes its Ada decla-
ration, an SQL declaration, and the definitions of the input and output parameters of the
procedures declared.

72

The following example illustrates the SAMeDL module for the SQL Module
described in Section 6.6.2 on page 67.

with Example_Definitions;

abstract nodule Example_module is

authorization Public

cursor Part_City

(Input_Status: Status Not Null)

for

select SP.PNO Not Null named Part_Number, S.City

from SP, S

where SP.SNO = S.SNO

and S.Status >= Input_Status;

is

procedure Part_City_Fetch is

fetch into Part_Cities: new Part_Nbr_City_Pairs

status Standard_Map;

end Part_City;

The SAMeDL module does not generate an Ada package exactly. It generates an
Ada package Example_Module containing a subpackage Part_City which, in turn, contains
the declaration of a record type, Part_Nbr_City_pairs, and three procedures named Open,
Fetch, and Close. The procedure Part_City_open in the SQL module has become
Part_City.Open.

Recently, two software houses have announced commercial implementations of
SAMeDL. Intermetrics in Cambridge, Massachusetts, has a SAMeDL version for Sybase.
This version is going through beta testing and preliminary information looks very promis-
ing. It is likely that the binding will be sold and supported by the DBMS vendor (Sybase,
Inc.), and the future implementation will be multi-threaded at the client site. Competence
Center Informatik of Meppen, Germany, also has a version of SAMeDL for the Oracle
database.

6.7 ADA 95 INTERFACE TO OTHER PROGRAMMING LANGUAGES

Ada 95 has eliminated the binding problem with other programming languages,
most notably with Cobol and C. This section outlines the standard interface procedures for

73

Cobol taken directly from the Ada 95 Reference Manual [ANSI95]. In the interests of con-
serving space, not all of the interface operations provided for by the interface extension of
Ada 95 are described here. The intent of this section is to outline enough of the new inter-

face standard to provide the reader with clear expectations on its new interface capabilities.

6.7.1 Interfacing Pragmas

A pragma Import is used to import an entity defined in a foreign language into an
Ada program, thus allowing a foreign language subprogram to be called from Ada, or a for-

eign language variable to be accessed from Ada. In contrast, a pragma Export is used to

export an Ada entity to a foreign language, thus allowing an Ada subprogram to be called

from a foreign language, or an Ada object to be accessed from a foreign language. The

pragmas Import and Export are intended primarily for objects and subprograms, although
implementations are allowed to support other entities.

A pragma convention is used to specify that an Ada entity should use the conven-
tions of another language. It is intended primarily for types and "callback" subprograms.
For example, pragma Convention (Fortran, Matrix); implies that Matrix should be repre-
sented according to the conventions of the supported Fortran implementation, namely col-
umn-major order.

A pragma Linker „Options is used to specify the system linker parameters needed
when a given compilation unit is included in a partition. An interfacing pragma is a repre-
sentation pragma that is one of the pragmas Import, Export, or Convention. Their forms,
together with that of the related pragma Linker „Options, are as follows:

pragma Import (

[Convention =>] convention_identifier,

[Entity =>] local_name [,

[External_Name=>] string_expression] [,

[Link_Name =>] string_expression]);

pragma Export (

[Convention =>] convention_identifier,

[Entity =>] local_name [,

[External_Name=>] string_expression] [,

[Link_Name =>] string_expression]);

74

pragma Convention!

[Convention =>] convention_identifier,

[Entity =>] local _name);

pragma Linker_Options(string_expression);

A pragma Linker_Options is allowed only at the place of a declarative_item. The expected

type for a string_expression in an interfacing pragma or in pragma Linker_Options is
String;

The example of interfacing to a pragma available in Ada 95 is as follows:

package Fortran_Library is

function Sqrt (X : Float) return Float;

function Exp (X : Float) return Float;

private

pragma Import(Fortran, Sqrt);

pragma Import(Fortran, Exp);

end Fortran_Library;

6.7.2 The Package "Interfaces"

The Ada 95 defined package called "Interfaces" is the parent of several library pack-
ages that declare types and other entities useful for interfacing to foreign languages. It also
contains some implementation-defined types that are useful across more than one language
(in particular for interfacing to assembly language).

The library package Interfaces has the following skeletal specification:

package Interfaces is

pragma Pure(Interfaces);

type Integer_n is range -2**n .. 2**n-l; —2's complement

type Unsigned_n is mod 2**n;

function Shift_Left (Value : Unsigned_n; Amount : Natural) return
Unsigned_n;

function Shift_Right (Value : Unsigned_n; Amount : Natural) return
Unsigned_n;

function Shift_Right_Arithmetic (Value : Unsigned_n; Amount : Nat-
ural)

return Unsigned_n;

75

function Rotate_Left (Value : Unsigned_n; Amount : Natural) return
Unsigned_n;

function Rotate_Right (Value : Unsigned_n; Amount : Natural) return
Unsigned_n;

end Interfaces;

6.7.3 Interfacing with Cobol
m

6.7.3.1 Definitions

The facilities relevant to interfacing with the Cobol language are the package Inter-

faces.Cobol and support for the Import, Export, and Convention pragmas with
convention_identifier Cobol.

The Cobol interface package supplies several sets of facilities:

• A set of types corresponding to the native Cobol types of the supported Cobol

implementation (so-called "internal Cobol representations"), allowing Ada data
to be passed as parameters to Cobol programs.

• A set of types and constants reflecting external data representations that might

be found in files or databases, allowing Cobol-generated data to be read by an
Ada program, and Ada-generated data to be read by Cobol programs.

• A generic package for converting between an Ada decimal type value and either
an internal or external Cobol representation.

The library package Interfaces.Cobol is a child package of the package Interfaces,
whose specification includes the following types of declarations:

package Interfaces.Cobol is

pragma Preelaborate(Cobol);

— Typma and operations for internal data representations

type Floating is digits implementation-defined;

type Long_Floating is digits implementation-defined;

type Binary is range implementation-defined;

function To_Cobol (Item : in String) return Alphanumeric-

function To_Ada (Item : in Alphanumeric) return String;

76

procedure To_Cobol (Item : in String;

Target : out Alphanumeric-
Last : out Natural);

procedure To_Ada (Item : in Alphanumeric;
Target : out String;
Last : out Natural);

— Formats for Cobol data, representations

type Display_Format is private;

Unsigned : constant Display_Format;

Leading_Separate : constant Display_Format;

Trailing_Separate : constant Display_Format;

— Types for external representation of Cobol binary data

type Byte is mod 2**Cobol_Character'Size;

type Byte_Array is array (Positive range <>) of Byte;

pragma Pack (Byte_Array);

Conversion_Error : exception;

generic

type Num is delta <> digits <>;

package Decimal_Conversions is

— Display Formats: data values arm rapraaantad aa Numeric

function Valid (Item : in Numeric;

Format : in Display_Format) return Boolean;

function Length (Format : in Display_Format) return Natural;

function To_Decimal (Item : in Numeric-

Format : in Display_Format) return Num;

— Binary formats; axtarnal data values raprmaantad aa Byta_Array

function Valid (Item : in Byte_Array;

Format : in Binary_Format) return Boolean;

function Length (Format : in Binary_Format) return Natural;

— Intarnal Binary formate: data values ara of type Binary or
Ziong_Binary

11

function To_Decimal (Item : in Binary) return Num;

function To_Decimal (Item : in Long_Binary) return Num;

end Decimal_Conversions;

private

... — not specified by the language

end Interfaces.Cobol;

Each of the types in Interfaces.Cobol is Cobol compatible. The types Floating and
Long_Floating correspond to the native types in Cobol for data items with computational

usage implemented by floating point. The types Binary and Long_Binary correspond to the

native types in Cobol for data items with binary usage, or with computational usage imple-
mented by binary.

Each of the functions To_Cobol and To_Ada converts its parameter based on the
mappings Ada_To_Cobol and Cobol_To_Ada, respectively. The length of the result for
each is the length of the parameter, and the lower bound of the result is 1. Each component
of the result is obtained by applying the relevant mapping to the corresponding component
of the parameter.

Each of the procedures To_Cobol and To_Ada copies converted elements from Item
to Target, using the appropriate mapping (Ada_To_Cobol or Cobol_To_Ada, respectively).

The index in Target of the last element assigned is returned in Last (0 if Item is a null array).
If Item 'Length exceeds Target 'Length, then Constraint_Error is propagated.

6.7.3.2 Example

One of the examples of calling a Cobol program from Ada 95 provided in the Ada
95 Reference Manual is as follows:

with Interfaces.Cobol;

procedure Test_Call is

— Calling a foreign Cobol program

— Assume that a Cobol program PROG has the following declaration

— in its LINKAGE section:

— 01 Parameter-Area

— 05 NAME PIC X(20) .

-- 05 SSN PIC X(9) .

— 05 SALARY PIC 99999V99 USAGE COMP.

78

— The effect of PROG is to update SALARY based on some algorithm

package Cobol renames Interfaces.Cobol;

type Salary_Type is delta 0.01 digits 7;

type Cobol_Record is record

Name : Cobol.Numeric(1..20);

SSN : Cobol.Numeric(1. . 9) ;

Salary : Cobol.Binary; — Assume Binary = 32 bits

end record;

pragma Convention (Cobol, Cobol_Record);

procedure Prog (Item : in out Cobol_Record);

pragma Import (Cobol, Prog, "PROG");

package Salary_Conversions is

new Cobol.Decimal_Conversions(SalaryJType);

Some_Salary : SalaryJType := 12_345.67;

Some_Record : Cobol_Record :=

(Name => "Johnson, John ",

SSN => "111223333*,

Salary => Salary_Conversions.To_Binary(Some_Salary));

begin

Prog (Some_Record);

end Test_Call;

This example could easily be modified to illustrate wrapping with a domain object.
The Ada procedure Prog could be defined within a package that specifies a suitable object
class, such as an employee class, and take such employee objects as an argument. The Ada
Prog would need some modification to extract the relevant fields from the employee object
and place them in the proper format of a record for the Cobol PROG. Then, the "legacy"
Cobol procedure PROG would be wrapped by the employee class and the interface prag-
mas. We hesitate to present the actual code for such a modification since we have not been
able to test it on an Ada 95 compiler yet, and we are limiting our listings of code fragments
to those that have been tested or officially sanctioned (as in this last listing).

79

7. SUMMARY OF GUIDELINES AND ISSUES

7.1 GUIDELINES FOR OO WRAPPING

In the course of investigating alternative strategies and tactics for OO wrapping, a

number of guidelines have emerged for choosing and applying them in a variety of con-

texts. OO wrapping has been identified as an effective technique for encapsulating legacy
software components within a partially modernized migration system. Wrapping can sup-
port staged migration of legacy systems to modernized OO systems as well as the incorpo-
ration of trusted legacy software into new systems. Another application for which wrapping

is recommended is to establish data standardization of legacy code and data without reengi-
neering legacy systems.

When the resources are available, it is recommended to use domain object models
for wrapping legacy components rather than simply wrapping components as software
objects. Such object model wrapping is identified as providing a better foundation for any
subsequent legacy modernization or extensions. Costs of building such object models can
be minimized by judicious abstraction of the domain objects, modeling only those features
that are essential to wrapping.

One reason behind favoring wrapping over reengineering is the presence of any
strong time pressure to modernize a legacy system quickly; factors include the following:

• Expiring hardware and software contracts

• Shift to new platforms

• New functionality requirements

• Requirements for interoperability with other reengineered AISs

• Data item standardization requirements

Other reasons to prefer wrapping to reengineering are as follows:

• Absence of documentation

• Departure of all domain experts

81

• Complexity of code

• Fragility (or brittleness) of code

• Size of code or database

• Staffing resource limitations

Wrapping feasibility depends on conditions of the legacy and target migration environ-

ments, such as modularity of legacy code, and support for interfaces between legacy com-

ponents and the migration 00 environment. Under such favorable conditions, wrapping
may be the most effective means of meeting modernization deadlines.

Guidance on overall system migration strategies is also provided. Four different

such strategies are identified. The "one-shot rebuild" strategy is identified as risky for large

systems because it attempts too much reengineering at once. Of the remaining strategies,
"unite-and-conquer" stands out as generally superior due to its use of a unifying object

model of the business enterprise for wrapping multiple software components. These
models can provide transparent access to the data stores throughout the whole migration
process. This supports incremental modernization of the legacy system while minimizing
costly revisions to object models and data access code. Business models also provide a new
00 perspective on the business domain that can be helpful in guiding subsequent modern-
ization phases. Business model objects may also experience considerable reuse at subse-
quent phases of migration, and possibly even in other systems, thus lowering costs of
subsequent migration activities. The only drawback to this strategy is the cost of building
the business model. Hence, this strategy is only recommended for migration stages wherein

sufficient resources are available for this extensive task. In other contexts, a less cohesive
modernization of a legacy system may be all that is feasible.

7.2 LEGACY WRAPPING ISSUES

Wrapping legacy software offers considerable promise of easing the difficult tran-
sition from obsolete legacy systems to modernized systems with the advantages of greater
maintainability, modifiability, and reuse inherent in 00 technology. Our investigations into
alternative strategies for designing and implementing software wrapping have identified a
variety of issues which will benefit from further investigation.

Client-server model. This is a powerful paradigm for integrating legacy system
components with modernized ones. Guidelines need to be developed on conditions under
which the client-server should be considered and how it should be implemented. The guide-

82

lines should include the issue of migration from a mainframe-based legacy system to local

area network based computing with open server, workstation, and communication proto-
cols.

GUI-based front end. The GUI has become the standard interface for today's user.
The issue of transforming the character-based user interface inherent to many legacy sys-

tems to the GUI must be addressed. In many legacy systems, multiple types of user inter-
faces exist based on the terminal types. Techniques need to be developed and guidelines
must be prepared to map these terminal-oriented user interfaces to a single GUI.

Multiple terminals. Many legacy applications are tightly coupled to terminal hard-
ware and proprietary communications software. Guidelines must be developed to help
implementors create virtual terminals based on open communications protocols and soft-

ware so that they can be directly mapped to today's GUI but still retain the look and feel of
the user interface of the legacy system when warranted.

Database bindings. OO program bindings to relational DBMSs are still evolving
and developers will need more standards-based technology support in this area. Technology
must be developed so that one can capture the database of the legacy system and transition
it to the new relational DBMS technology. The developers will also require guidelines and
examples on how to interface their specific relational DBMSs to Ada programs which may
or may not be supported by the vendors.

Data structure and conversion. Ada's arithmetic facility does not readily handle the
exact decimal model needed for financial computations, leaving an impediment to a suc-
cessful transition to Ada for information systems applications. The Ada Decimal Arith-
metic and Representatives (ADAR) project addresses this shortcoming by providing a set
of packages that define and implement decimal support in Ada 83. Today, most of the ven-
dors do not support ADAR packages, and guidelines must be developed on the implemen-
tation and usage of financial data in Ada.

Interoperability. Issues related to interoperability between old, conventional sys-
tems and new, object-oriented systems need to be addressed for DoD. Is the Object Man-
agement Group's Object Request Broker, for example, a viable solution to the problem of
interoperability?

Real-time legacy system. The use of OO technology for real-time system is not
addressed in this report nor is the wrapping strategy for such systems. Further work needs

83

to be done that identifies the unique issues related to real-time system and how to resolve
some of them. This is still an open research area.

84

APPENDIX A.
EXAMPLES OF OO PROGRAMMING CODE

A.1 LEGACY COBOL PROGRAM

A.1.1 COBOL Listing

IDENTIFICATION DIVISION.

PROGRAM-ID. TAX-CALCULATION.

AUTHOR. UNKNOWN.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. VAX.

OBJECT-COMPUTER. VAX.

INPUT-OUTPUT SECTION.

RLE-CONTROL

SELECT EMPLOYEE-FILE ASSIGN TO TESTP.DAT".

SELECT DEPT-DIVISION-LIST ASSIGN TO PRINTER.

DATA DIVISION.

FILE SECTION.

FD EMPLOYEE-FILE

LABEL RECORDS ARE STANDARD

DATA RECORD IS INPUT-RECORD.

01 INPUT-RECORD.

02 IR-NAME PIC X(25)

02 IR-ADDRESS PIC X(30)

02 IR-NUMBER PIC 9(9).

02 IR-DIVISION PIC X.

02 IR-DEPARTMENT PIC X(2).

02 IR-SALARY PIC 9(6).

02 FILLER PIC X(2).

A-l

02 IR-DEPENDENT

02 FILLER PIC

02 IR-STATUS PIC

02 FILLER PIC

PIC

X.

X.

X.

99.

FD DEPT-DIVISION-LIST

LABEL RECORDS ARE OMITTED

DATA RECORD IS PRINT-LINE.

01 PRINT-LINE PIC X(132).

WORKING-STORAGE SECTION.

01 CONSTANTS.

02 LINES-PER-PAGE

01 COUNTERS.

03 PAGE-CNT

03 LINE-CNT

88 PAGE-FULL

PIC 99 VALUE 46.

PIC 999 VALUE ZERO.

PIC 99 VALUE 46.

VALUE 46 THROUGH 99.

01 ACCUMUL-TOTALS.

03 NUMBER-OF-EMPLOYEES

03 SALARY-TOTAL

03 DEPT-NUMBER-OF-EMP

03 DEPT-TOTAL-SALARY

03 DEPT-TOTAL-TAX

03 DIVISION-NUMBER-OF-EMP

03 DIVISION-TOTAL-SALARY

PIC 9(3) VALUE ZERO.

PIC 9(8) VALUE ZERO.

PIC 99 VALUE ZERO.

PIC 9(8) VALUE ZERO.

PIC 9(8) VALUE ZERO.

PIC 9(4) VALUE ZERO.

PIC 9(8) VALUE ZERO.

01 HOLD-FILEDS.

03 HOLD-DEPARTMENT

03 HOLD-DIVISION

03 HOLD-STATUS

PIC X(2) VALUE SPACES.

PIC X VALUE SPACES.

PIC X VALUE SPACES.

01 TAX-FIELDS.

03 HOLD-FED-TAX

03 HOLD-STATE-TAX

03 TOTAL-FED-TAX

03 HOLD-TOTAL-TAX

PIC 9(5)V99 VALUE ZERO.

PIC 9(5)V99 VALUE ZERO.

PIC 9(8)V99 VALUE ZERO.

PIC 9(8)V99 VALUE ZERO.

A-2

03 TOTAL-STATE-TAX

03 HOLD-DEPENDENT

03 NET-SALARY

03 FED-TAX-RATE-1

03 FED-TAX-RATE-2

03 FED-TAX-RATE-3

03 STATE-TAX-RATE

01 END-OF-FLAG

88 END-OF-FILE

01 MAJOR-HEADING.

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 MH-PAGE-COUNTEF

01 SUBHEADING.

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 FILLER

02 FILLER

PIC 9(8)V99 VALUE ZERO.

PIC 99 VALUE ZERO.

PIC 9(8)V99 VALUE ZERO.

PIC 9V99 VALUE 0.15.

PIC 9V99 VALUE 0.28.

PIC 9V99 VALUE 0.31.

PIC 9V99 VALUE 0.05.

PIC X(3) VALUE "NO".

VALUE "YES".

PIC X(44) VALUE SPACES.

PIC X(3) VALUE "ABC".

PIC X VALUE SPACES.

PIC X(7) VALUE "COMPANY".

PIC X VALUE SPACES.

PIC X(19) VALUE

"DIVISION/DEPARTMENT.

PIC X VALUE SPACES.

PIC X(8) VALUE "EMPLOYEE"

PIC X VALUE SPACES.

PIC X(6) VALUE "REPORT".

PIC X(10) VALUE SPACES.

PIC X(5) VALUE "PAGE ".

PIC ZZZ.

PIC X(25) VALUE " EMPLOYEE NAME "

PIC X(8) VALUE SPACES.

PIC X(15) VALUE "EMP NUMBER".

PIC X(2) VALUE SPACES.

PIC X(6) VALUE "STATUS".

PIC X(2) VALUE SPACES.

PIC X(10) VALUE "DEPARTMENT.

PIC X(3) VALUE SPACES.

PIC X(5) VALUE " DEP".

A-3

01

02

01

02 FILLER PIC X(8) VALUE SPACES.

02 FILLER PIC X(11) VALUE " SAURY ".

02 FILLER PIC X(8) VALUE SPACES.

02 FILLER PIC X(7) VALUE TOT-TAX".

DETAIL-LINE.

02 DL-NAME PIC X(25).

02 FILLER PIC X(8) VALUE SPACES.

DL-EMPLOYEE-NUMBER PIC X(9).

02 FILLER PIC X(9) VALUE SPACES.

02 DL-STATUS PIC X.

02 FILLER PIC X(7) VALUE SPACES.

02 FILLER PIC X(6) VALUE SPACES.

02 DL-DEPARTMENT PIC X(2).

02 FILLER PIC X(5) VALUE SPACES.

02 DL-DEPENDENT PIC 29.

02 FILLER PIC X(12) VALUE SPACES.

02 DL-SALARY PIC $ZZZ,ZZZ.99.

02 FILLER PIC X(8) VALUE SPACES.

02 DL-TAX PIC $ZZZ,ZZZ.99.

DEPARTMENT-TOTAL-LINE.

02 FILLER PIC X(35) VALUE SPACES.

02 DTL-NO-EMP PIC Z9.

02 FILLER PIC X(5] I VALUE SPACES.

02 FILLER PIC X(9] I VALUE "EMPLOYEES'

02 FILLER PIC X(27) VALUE SPACES.

02 DTL-TOTAL-SALARY PIC $",' "Y".99.

02 FILLER PIC X(8) I VALUE SPACES.

02 DTL-TAX PIC $*" ,"\99.

01 DIVISION-TOTAL-LINE.

02 FILLER PIC X(35) VALUE

» "«« DIVISION TOTAL **""".

02 FILLER PIC X(10) VALUE SPACES.

02 DVT-NUMBER-OF-EMP PIC Z9.

02 FILLER PIC X(5) VALUE SPACES.

A-4

01

02 FILLER PIC X(9) VALUE "EMPLOYEES

02 FILLER PIC X(7) VALUE SPACES.

02 DVT-TOTAL-SALARY PIC <£** *** ***

SUMMARY-LINE.

02 FILLER PIC X(15) VALUE SPACES.

02 FILLER PIC X(20) VALUE

"COMPANY TOTAL ""*".

02 SL-NO-OF-EMPLOYEES PIC ZZZ9.

02 FILLER PIC X(5) VALUE SPACES.

02 FILLER PIC X(9) VALUE "EMPLOYEES

02 FILLER PIC X(37) VALUE SPACES.

02 SL-SALARY-TOTAL PIC dj*# *** "*.99.

PROCEDURE DIVISION.

001-START-SECTION.

PERFORM A200-INITIALIZATION.

PERFORM A300-CONTROL

UNTIL END-OF-FILE.

PERFORM A900-TERMINATION.

STOP RUN.

A200-INITIALIZATION.

OPEN INPUT EMPLOYEE-FILE

OUTPUT DEPT-DIVISION-LIST.

PERFORM A400-READ.

MOVE IR-DEPARTMENT TO HOLD-DEPARTMENT

MOVE IR-DIVISION TO HOLD-DIVISION.

A300-CONTROL.

IF IR-DIVISION NOT = HOLD-DIVISION

PERFORM A600-DEPARTMENT-BREAK

PERFORM A650-DIVISION-BREAK

ELSE

IF IR-DEPARTMENT NOT = HOLD-DEPARTMENT

PERFORM A600-DEPARTMENT-BREAK.

A-5

PERFORM A500-PROCESS.

PERFORM A400-READ.

A400-READ.

READ EMPLOYEE-FILE

AT END MOVE "YES" TO END-OF-FLAG.

A500-PROCESS.

MOVEIR-NAME TO DL-NAME.

MOVE IR-NUMBER TO DL-EMPLOYEE-NUMBER.

MOVE IR-SALARY TO DL-SALARY.

MOVE IR-STATUS TO DL-STATUS.

MOVE IR-DEPENDENT TO DL-DEPENDENT.

MOVE IR-DEPARTMENT TO DL-DEPARTMENT.

MOVE IR-STATUS TO HOLD-STATUS.

MOVE IR-DEPENDENT TO HOLD-DEPENDENT.

ADD IR-SALARY TO DEPT-TOTAL-SALARY

ADD IR-SALARY TO DIVISION-TOTAL-SALARY.

IF HOLD-STATUS NOT = "C

THEN

PERFORM A550-TAX-CALCULATION

MOVE HOLD-TOTAL-TAX TO DL-TAX

ADD HOLD-TOTAL-TAX

ELSE

MOVE ZERO TO DL-TAX.

TO DEPT-TOTAL-TAX

ADD 1

ADD 1

ADD IR-SALARY

ADD 1

TO DEPT-NUMBER-OF-EMP.

TO DIVISION-NUMBER-OF-EMP.

TO SALARY-TOTAL

TO NUMBER-OF-EMPLOYEES.

IF PAGE-FULL

PERFORM A700-WRITE-HEADINGS.

WRITE PRINT-LINE FROM DETAIL-LINE AFTER 2.

A-6

ADD2T0LINE-CNT.

A550-TAX-CALCULATION.

IF IR-SALARY <= 20000

THEN

COMPUTE NET-SAURY = IR-SALARY - (2500 * HOLD-DEPENDENT)

COMPUTE HOLD-FED-TAX = FED-TAX-RATE-1 * NET-SALARY

ELSE

IF IR-SALARY > 20000 AND <= 40000

COMPUTE NET-SALARY = IR-SALARY - (2500 * HOLD-DEPENDENT)

COMPUTE HOLD-FED-TAX = FED-TAX-RATE-2 * NET-SALARY

ELSE

COMPUTE NET-SALARY = IR-SALARY - 2500 * HOLD-DEPENDENT

COMPUTE HOLD-FED-TAX = FED-TAX-RATE-3 * NET-SALARY.

COMPUTE HOLD-STATE-TAX'■ STATE-TAX-RATE * IR-SALARY.

COMPUTE HOLD-TOTAL-TAX = HOLD-FED-TAX + HOLD-STATE-TAX.

A600-DEPARTMENT-BREAK.

MOVE DEPT-NUMBER-OF-EMP TO DTL-NO-EMP.

MOVE DEPT-TOTAL-SALARY TO DTL-TOTAL-SALARY.

MOVE HOLD-TOTAL-TAX TO DTL-TAX.

IF PAGE-FULL

PERFORM A700-WRITE-HEADINGS.

WRITE PRINT-LINE FROM DEPARTMENT-TOTAL-LINE AFTER 2.

ADD2TOLINE-CNT.

MOVE 0 TO DEPT-NUMBER-OF-EMP.

MOVE 0 TO DEPT-TOTAL-SALARY.

MOVE IR-DEPARTMENTTO HOLD-DEPARTMENT.

A650-DIVISION-BREAK.

MOVE DIVISION-TOTAL-SALARY TO DVT-TOTAL-SALARY.

MOVE DIVISION-NUMBER-OF-EMPTO DVT-NUMBER-OF-EMP.

IF PAGE-FULL

PERFORM A700-WRITE-HEADINGS.

WRITE PRINT-LINE FROM DIVISION-TOTAL-LINE AFTER 3.

A-7

MOVE 0 TO DVT-NUMBER-OF-EMP.

MOVE 0 TO DIVISION-TOTAL-SALARY.

MOVE IR-DIVISION TO HOLD-DIVISION.

A700-WRITE-HEADINGS.

ADD 1 TO PAGE-CNT.

MOVE PAGE-CNT TO MH-PAGE-COUNTER.

WRITE PRINT-LINE FROM SUBHEADING AFTER 2.

MOVE3TOUNE-CNT.

A800-WRITE-SUMMARY-LINE.

MOVE NUMBER-OF-EMPLOYEES TO SL-NO-OF-EMPLOYEES.

MOVE SALARY-TOTAL TO SL-SALARY-TOTAL.

WRITE PRINT-LINE FROM SUMMARY-LINE AFTER 3.

A900-TERMINATION.

PERFORM A600-DEPARTMENT-BREAK.

PERFORM A650-DIVISION-BREAK.

PERFORM A800-WRITE-SUMMARY-LINE.

CLOSE EMPLOYEE-FILE

DEPT-DIVISION-LIST.

A.1.2 Employee Data File

JONES BRIAN 6463 FRENCHMENS DRIVE.ALEX.VA, 156780225 1 CS 123456 01 F

SMITH DOUG 1234 ANY WHERE .MCLN.VA, 123450999 1 CS009999 02 C

JOHN DOE 9999 MY STREET ,WHTH,VA.999999998 2 ST019899 03 H

JANE DOE 7777 GOOD STREET ,NATICK,MA,777000555 3 SE567890 02 F

A.1.3 Tax Report Listing

EMPLOYEE NAME EMP NUMBER STATUS DEPARTMENT DEP SALARY TOT-TAX

JONES BRIAN 156780225 F CS 1 $123,456.00 $43,669.16

SMITH DOUG 123450999 C CS 2 $9,999.00 $.00

2 EMPLOYEES $***133,455.00 $*43,669.16

****** DIVISION TOTAL ****** 2 EMPLOYEES $***133,455

JOHN DOE 999999998 H ST 3 $ 19,899.00 $2,854.80

1 EMPLOYEES $****19,899.00 $"2,854.80

****** DIVISION TOTAL ****** 3 EMPLOYEES $****19,899

JANE DOE 777000555 F SE 2 $567,890.00 $102,890.40

A-8

1 EMPLOYEES $***567,890.00 $102,890.40

«*— DIVISION TOTAL ****** 4 EM PLOYEES $***567,890

COMPANY TOTAL ***** 4 EMPLOYEES$***721,244.00

A.2 ADA PACKAGE SPECIFICATIONS

A.2.1 ss s.ada

— Abstraction

package Social_Security is

type Number is private;

Default_Separator : constant Character :='' ';

Invalid_Number : exception;
function Construct (Parti : in Natural;

Part2 : in Natural;
Part3 : in Natural) return Number;

function Image (Self : in Number;
Separator : in Character := Default_Separator)

return String;

private
type Number is new String(1..11);

end Social_Security;

A.2.2 employee_s.ada

with Social_Security;
with ADAR_Comp;

-- Class:

package Employee is
type Class is private;

— Attributes:

type Name is new String (1..25);
type Number is new Social_Security.Number;
type Department is (Unknown,

Computer_Science,
Science_and_Technology,
Systems_Evaluation);

type Status is (Salaried, Hourly, Consultant);
type Money is new ADAR_Comp.Decimal (Precision => 9, Scale => 2);

— Object Management:

A-9

— Without a Constructor, this type cannot be used. Look at subclasses
— to see how to construct objects. In Ada 95, Class can be an
— abstract type!

— Attribute access operations:

procedure Change (Self : in Class;
Emp_Name : in Name;
SS_Number : in Number);

— Overloading is a form of (ad-hoc) polymorphism:
procedure Change (Self : in Class; D : in Department);
procedure Change (Self : in Class; Salary : in Money);

function Emp_Name (Self : in Class)
function SS_Number (Self : in Class)
function Emp_Status (Self : in Class)
function Emp_Department (Self : in Class)
function Emp_Salary (Self : in Class)

return Name;
return Number;
return Status;
return Department;
return Money;

— Operations:

package Abstract is
function Net_;Pay
function Send_Check_To

end Abstract;

(Self : in Class) return Money;
(Self : in Class) return String;

— For Child packages only (see Ada 95) :
— Start private section here when migrating to Ada 95!

— Status is used as the tag to simulate polymorphism.
type Tag is new Status;
type Structure (Tagged : Tag) is private;

private
— The discriminant. Tagged, is used to simulate runtime polymorphism.
— This should be replaced in Ada 9X with the corresponding tagged record
— declaration.
type Structure (Tagged : Tag) is

record
Emp_Name : Name;
SS_Number : Number;
Emp_Department : Department;
Emp_Salary : Money;

end record;

type Class is access Structure;

end Employee;

A-10

A.2.3 employee_consuIting_s.ada

with Employee;

Subclass

package Employee_Consulting is
typ« Class is new Employee.Class; — Inheritance

— Object Management

procedure Initialize (Object : in out Class);

— New attribute access operations

procedure Set_Mail_Address (Self : in Class; MA : in String);
function Mail_Address (Self : in Class) return String;

-- New operations

— The Dispatching methods declared in the parent class must
— be defined for each subclass and the dispatching method itself
— updated to invoke the correct subclass method.
function Net_Pay (Self : in Class) return Employee. Money;
function Send_Check_To (Self : in Class) return String;

— For dispatching only. See implementation of Parent Class. Remove
— in Ada 95.
Unigue_Tag : constant Employee.Tag := Employee.Consultant;

private
— A quick and dirty way to deal with unconstrained attributes:
type Mailing_Address is access String;

— The subclass structure must keep the parent structure intact
— while appending additional data. This implementation works for
— most compilers:
type Structure is
record

Parent : Employee.Structure(Unique_Tag);
MA : Mailing_Address;

end record ,-
end Employee_Consulting;

A.2.4 employee_taxable_s.ada
with Employee;

A-ll

— Subclass

— This package combines two subclasses, something Ada can do more
— conveniently than other languages:
package EmployeeJTaxable is

type Class is new Employee.Class;

-- Attributes;

— Tax uses the already defined Employee.Money type.
type Deduction is range 0..12;

-- Object management:

procedure Initialize_Hourly (Object : in out Class);
procedure Initialize_Salaried (Object : in out Class);

— New attribute operations:

procedure Change (Self : in Class; Tax : in Employee.Money);
procedure Change (Self : in Class; D : in Deduction);

function Tax (Self : in Class) return Employee.Money;
function Deductions (Self : in Class) return Deduction;

— New operations:

function Net_Pay (Self : in Class) return Employee.Money;
function Send_Check_To (Self : in Class) return String;

Unique_Hourly_Tag : constant Employee.Tag := Employee.Hourly;
Unique_Salaried_Tag : constant Employee.Tag := Employee.Salaried;

private
— The two different structures are identical except for the tag:
type Structure_Hourly is — new Employee.Structure with
record

Parent : Employee.Structure(Unique_Hourly_Tag);
Tax : Employee.Money;
D : Deduction;

end record;
type Structure_Salaried is — new Employee.Structure with
record

Parent : Employee.Structure(Unigue_Salaried_Tag) ;
Tax : Employee.Money;
D : Deduction;

end record;

A-12

end Employee_Taxable;

A.2.5 empIoyee_file_s.ada

with Employee; — An associated class

Class

package Employee_File is
typ« Class is limited private;

— Object management.

— The Open procedure provides the constructor method:
Unable_to_Open_File : exception;
procedure Open (Self : in out Class;

Path_Name : in String);

— The Close procedure provides the destructor method:
procedure Close (Self : in out Class);

— Operations:

Unable_to_Read_File : exception;
Attempt_to_Read_Past_EOF : exception;
function Get_Next (Self : in Class) return Employee.Class;

function End_of_File (Self : in Class) return Boolean;

private
— When Structure is not visible, cannot inherit from this class. A tag:
— is not needed, either.
type Structure;

type Class is access Structure;
end Employee_File;

A.2.6 check_s.ada

with Employee; — an associated class
with Calendar; — used for the date attribute

— Class

package Check is
type Class is private;

A-13

— Object management:

— This class has an association with Employee.Class which is
— implemented one way.
function Construct (Pays : in Employee.Class;

Number : in Natural;
Date : in Calendar.Time := Calendar.Clock)

return Class;

— Operations

procedure Print (Self : in Class);

private
type Structure is
record

Pays : Employee.Class;
Number : Natural;
Date : Calendar.Time;

end record ,-

type Class is access Structure;

end Check;

A.2.7 payrolLada

with Employee_File;
with Check;
with Tax_Calculation;

with Text_IO; — For User Interface

— Class

— This is a control class, most easily implemented as a procedure,
— although a package could be used in preparation for a more
— sophisticated user interface (such as X-windows callbacks).
procedure Payroll is
— There is only one payroll, therefore a type definition is not needed.

— Attributes

DB : Employee_File.Class;
Check_Number : Natural;
Report_File_Name : constant String := "PRINTER.DAT";

— User-Interface

A-14

Input_Buffer : String (1..80);
Input_Length : Natural;

Operations

begin
Generate_Report:
begin

Tax_Calculation;
end Generate_Report;

Set_File_Name:
begin

Employee_File.Open (DB, Report_File_Name);
end Set_File_Name;

Set_Starting_Check_Number:
begin

Text_IO.Put_Line ("Enter starting check number:");
Text_IO.Get_Line (Input_Buffer, Input_Length);
Check_Number := Natural'Value (Input_Buffer (1..Input_Length));

end Set_Starting_Check_Number;

Print_Payroll:
begin
while not Employee_File.End_of_File (DB) loop
begin

Check.Print (Check.Construct (Employee_File.Get_Next (DB),
Check_Number));

Check_Number := Check_Number + 1;
exception
when Employee_File.Attempt_to_Read_Past_EOF =>

exit;
when others =>

null;
end;

end loop;

Employee_File.Close (DB);
end Print_Payroll;

end Payroll;

A.3 ADA PACKAGE BODIES

A.3.1 ss_b.ada

package body Social_Security is

Operation definitions

function Fixed_Image (N : in Natural;

A-15

Length : in Natural) return String is
Result : String(1..Length) := String'(1..Length => %0');
Image : constant String := Natural'Image(N);
L : constant Natural := Image'Length;

begin
Result(2+Length-L..Length) := Image(Image'First+1..Image'Last);
return Result;

end Fixed_Image;

function Construct (Parti : in Natural;
Part2 : in Natural;
Part3 : in Natural) return Number is

begin
if Parti in 0..999 and

Part2 in 0..99 and
Part3 in 0..9999 then

return Number (Fixed_Image (Parti,3) & '-' &
Fixed_Image (Part2,2) & '-' &
Fixed_Image (Part3,4)

);
else

raise Invalid_Number;
end if;

end Construct;

function Image (Self : in Number;
Separator : in Character := Default_Separator)

return String is
begin

if Separator = Default_Separator then
return String(Self);

else

Convert_Delimeter:
declare

Str : Stringd. .Self'Length) := String (Self) ;
begin

Str(4) := Separator;
Str(7) := Separator;
return Str;

end Convert_Delimeter;

end if;
end Image;

end Social_Security;

A.3.2 empIoyee_b.ada

package body Employee is

Operation definitions

A-16

procedure Change (Self
Emp_Name
SS_Number

begin
Self.Emp_Name := Emp_Name;
Self.SS_Number := SS_Number;

end;

in Class;
in Name;
in Number) is

procedure Change (Self : in
begin

Self.Emp_Department := D;
end;

Class; D : in Department) is

procedure Change (Self : in
begin

Self.Emp_Salary := Salary;
end;

Class; Salary : in Money) is

function Emp_Name (Self : in Class) return Name is
begin

return Self.Emp_Name;
end;

function SS_Number (Self : in Class) return Number is
begin

return Self.SS_Number;
end;

function Emp_Status
begin

return Status(Self.Tagged);
end;

(Self : in Class) return Status is

function Emp_Department (Self : in Class) return Department is
begin

return Seif.Emp_Department;
end;

function Emp_Salary (Self : in Class) return Money is
begin

return Self.Emp_Salary;
end;
— Dispatching operations can be separate to make updates easier
— and to localize the context clauses to the operations that use them.
package body Abstract is separate;

end Employee;

A.3.3 empIoyee_consulting_b.ada

with Unchecked_Conversion; — For simulating inheritance
with Ada; — .Tags

A-17

package body Employee_Consulting is

— Subclass Implementation

Data type definition

type Child_Pointer is access Structure; — of the Child.

Operation definitions

function Narrow (Parent_Pointer : in Class) return Child_Pointer is

function Convert_Pointer is
new Unchecked_Conversion (Source => Class,

Target => Child_Pointer);

Result : constant Child_Pointer
:= Convert_Pointer (Parent_Pointer);

use Employee;
begin

if Result.Parent.Tagged = UniqueJTag then — of this Child
return Result;

else
raise Ada.Tags.Tag_Error;

end if;
end Narrow;

procedure Initialize (Object : in out Class) is
function Convert_Pointer is
new Unchecked_Conversion (Child_Pointer, Class);

begin
Object := Convert_Pointer (new Structure); — of the Child

end;

function Mail_Address (Self : in Class) return String is
P : constant Child_Pointer := Narrow(Self);

begin
if P.MA = null then return "Hold";
•l«a return P.MA.all;
end if;

end;

procedure Set_Mail_Address (Self : in Class; MA : in String) is
begin
Narrow(Self).MA := new String'(MA);

end;

function Net_Pay (Self : in Class) return Employee.Money is
begin

return Emp_Salary(Self) ;
end;

function Send_Check_To (Self : in Class) return String is

A-18

begin
return Mail_Address(Self) ;

end;

end Employee_Consulting;

A.3.4 employee_taxable_b-ada

with Unchecked_Conversion; — For simulating inheritance
with Ada; —.Tags

package body Employee_Taxable is

— Subclass Implementation

Data type definitions

type Pointer_H is access Structure_Hourly;
type Pointer_S is access Structure_Salaried;

Operation definitions

— Narrow arbitrarily uses Pointer_H, it could use Pointer_S:
function Narrow (Parent_Pointer : in Class) return Pointer_H is

function Convert_Pointer is
new Unchecked_Conversion (Source => Class,

Target => Pointer_H);
Result : constant Pointer_H := Convert_Pointer(Parent_Pointer);
use Employee; — for "=" operator

begin
if Result.Parent.Tagged = Hourly or

Result.Parent.Tagged = Salaried then
return Result;

else
raise Ada.Tags.Tag_Error;

end if;
end Narrow;

procedure Initialize_Hourly (Object : in out Class) is

function Convert_Pointer is
new Unchecked_Conversion (Pointer_H, Class);

begin
Object := Convert_Pointer (new Structure_Hourly);

end;

procedure Initialize_Salaried (Object : in out Class) is

function Convert_Pointer is
new Unchecked_Conversion (Pointer_S, Class);

begin

A-19

Object := Convert_Pointer (new Structure_Salaried);
end;

procedure Change (Self : in Class; Tax : in Employee/Money) is
begin
Narrow(Self).Tax := Tax;

end;

procedure Change (Self : in Class; D : in Deduction) is
begin

Narrow(Self).D := D;
end;

function Tax (Self : in Class) return Employee.Money is
begin

return Narrow(Self).Tax;
end Tax;

function Deductions (Self : in Class) return Deduction is
begin

return Narrow(Self).D;
end Deductions;

function Net_Pay (Self : in Class) return Employee.Money is
Result : Employee.Money := Emp_Salary(Self);
use Employee;

begin
Decrement (Result, Tax(Self), Rounded => True);
return Result;

end;

function Send_Check_To (Self : in Class) return String is
begin

return Employee.Department'Image (Emp_Department(Seif));
end;

end EmployeeJTaxable;

A.3.5 empolyee_abstract.ada

with Employee_Taxable;
with Employee_Consulting;

separate (Employee)
package body Abstract is

Operation definitions

function Net_Pay (Self : in Class) return Money is
begin — Dispatching

case Self.Tagged is
when Hourly | Salaried =>

return Employee_Taxable.Net_Pay

A-20

(EmployeeJTaxable.Class (Self));

when Consultant =>
return Employee j:onsulting.Net JPay

(Employee_Consulting.Class(Self));
— Add additional children here
— No others clause! This is an abstract operation!

end ease;
end;

function Send_Check_To (Self : in Class) return String is
begin

case Self.Tagged is
when Hourly | Salaried =>

return EmployeeJTaxable.Send_Check_To
(EmployeeJTaxable.Class (Self));

when Consultant =>
return EmployeejConsulting.Send_Check_To

(Employee_Consulting.Class(Self));

— Add additional children here
— No others clause! This is an abstract operation!

end case;
end;

end Abstract;

A.3.6 employee_file_b.ada

with EmployeeJTaxable;
with Employee_Consulting;

with ADAR_Comp;
with Sequential_IO;

— Most of this file involves parsing an ASCII text file.
package body Employee_File is

— COBOL specification of data file format:
—01 DETAIL- -LINE.

02 DL-NAME PIC X(25) .
02 FILLER PIC X(8) VALUE SPACES
02 DL-EMPLOYEE-NUMBER PIC X(9).
02 FILLER PIC X(9) VALUE SPACES
02 DL-STATUS PIC X.
02 FILLER PIC X(7) VALUE SPACES
02 FILLER PIC X(6) VALUE SPACES
02 DL-DEPARTMENT PIC X(2).
02 FILLER PIC X(5) VALUE SPACES
02 DL-DEPENDENT PIC Z9.
02 FILLER PIC X(12) VALUE SPACES

A-21

02 DL-SALARY
02 FILLER
02 DL-' TAX

Data type definitions

type Detail_Line is
record

Emp_Name : String (1. .25);
Filler_l : String (1- ■ 8);
Emp_Number : String (1- .9);
Filler_2 : String (1. .9);
Emp_Status : Character;
Filler_3 String (1. .13);
Emp_Department String (1. .2);
Filler_4 String (1. .5);
Emp_Deductions String (1. .2);
Filler_5 String (1. .12);
Emp_Salary String (1. .11);
Filler_6 String (1. • 8);
Tax String (1. .11);
Filler_7 String (1. .16);

end record;

PIC $ZZZ,ZZZ.99.
PIC X(8) VALUE
PIC $ZZZ,ZZZ.99.

SPACES.

type Status_Conversion is array (Character) of Employee.Status;
Convert_Status : constant Status_Conversion

:= Status_Conversion'(xs' | 'S' |'f | 'F' => Employee.Salaried,
lh' j 'H' => Employee.Hourly,
'c' j »C => Employee.Consultant,
others => Employee.Hourly);

type Department_Code is (CS,ST,SE);
type Conversion is array (Department_Code) of Employee.Department;
Department_Convert : constant Conversion

:= (CS => Employee.Computer_Science,
ST => Employee.Science_and_Technology,
SE => Employee.Systems_Evaluation);

package File_Operations is
new Sequential_IO (Detail_Line);

type Structure is
record

File : File_Operations.File_Type;
end record;

Operation definitions

procedure Open (Self : in out Class;
Path_Name : in String) is

begin
if Self = null then Self := new Structure;
elsif File_Operations.Is_0pen (Self.File) then

A-22

File_Operations.Close (Self.File);
end if;

File_Operations.Open (File => Self.File,
Mode => File_Operations.In_File,
Name => Path_Name);

exception
when others =>

raise Unable_to_Open_File;
end Open;

procedure Close (Self : in out Class) is
begin

if Self /= null then
File_Operations.Close (Self.File);
— Deallocate Self — TBD

end if;
end Close;

function Salary_Value (S : in String) return Employee.Money is
Parse_S : String(1..S'Length) := S;
Result : Employee.Money;

begin
Zero_Leading:

for I in Parse_S'Range loop
case Parse_S(I) is
when '$' | '*' | » » => Parse_S(I)
when ',' => Parse_S(2..1)

Parse_S(l)
when others => null;

end case;
end loop Zero_Leading;

Employee.Move (Parse_S, Result);
return Result;

end Salary_Value;

= '0';
= Parse_S(l..1-1);
— * \

function Construct (Tag : in Employee.Status;
Name : in Employee.Name;
SS : in Employee.Number)

return Employee.Class is
Result : Employee.Class;
use Employee;

begin
case Tag is
when Consultant => Employee_Consulting.Initialize

(Employee_Consulting.Class(Result));
when Salaried => Employee_Taxable.Initialize_Hourly

(Employee_Taxable.Class(Result));
when Hourly => Employee_Taxable.Initialize_Salaried

(EmployeeJTaxable.Class(Result));
end case;
Employee.Change (Result, Name, SS);

A-23

return Result-

end;

function Get_Next (Self : in Class) return Employee.Class is
Data_Record : Detail_Line;

begin
if File_Operations.End_of_File (Self.File) then
raise Attempt_to_Read_Past_EOF;

end if;

File_Operations.Read (Self.File, Data_Record);

Parse_Data_Record:
declare

Result : constant Employee.Class := Construct (
Tag => Convert_Status(Data_Record.Emp_Status),
Name => Employee.Name(Data_Record.Emp_Name),
SS => Employee.Construct (
Parti => Natural'Value (Data_Record.Emp_Number(1..3)),
Part2 => Natural'Value (Data_Record.Emp_Number(4..5)),

Part3 => Natural'Value (Data_Record.Emp_Number(6..9))));
begin

Employee.Change (Result, Salary_Value(Data_Record.Emp_Salary));

Determine_Department:
declare
D : Department_Code;

begin
D := Department_Code'Value (Data_Record.Emp_Department);
Employee.Change (Result, Department_Convert (D));

exception
when others => Employee.Change (Result, Employee.Unknown) ;

end Determine_Department;

case Employee.Emp_Status(Result) is
when Employee.Salaried | Employee.Hourly =>
Employee_Taxable.Change (Self => Employee_Taxable.Class(Result),

Tax => Salary_Value (Data_Record.Tax));
Employee_Taxable.Change (EmployeeJTaxable.Class(Result),
Employee_Taxable.Deduction'Value(Data_Record.Emp_Deductions));

when others =>
null;

end case;

return Result;
end Parse_Data_Record;

exception
when others =>

raise Unable_to_Read_File;
end Get_Next;

A-24

function End_of_File (Self : in Class) return Boolean is
begin

return Self = null or else
not File_Operations.Is_Open (Self.File) or else
File_Operations.End_Of_File (Self.File);

end End_of_File;

end Employee_File;

A.3.7 check_b.ada

with Text_IO; — To print the check
with ADAR_Comp; — Format money

package body Check is

Operation definitions

function Construct (Pays : in Employee.Class;
Number : in Natural;
Date : in Calendar.Time := Calendar.Clock)

return Class is
Result : Class := new Structure;

begin
Result.Pays
Result.Number
Result.Date

return Result;
end Construct;

= Pays;
= Number;
= Date;

function Date_Image (Date : Calendar.Time) return String is
use Calendar;

begin
return Month_Number'Image(Month(Date)) & V &

Day_Number'Image (Day (Date)) & V &
Year_Number'Image (Year (Date));

end;

procedure Print (Self : in Class) is
begin

Text_IO.New_Line;
Text_IO.Put_Line(Integer'Image(Self.Number) &

String'(1..10 =>'')& Date_Image(Self.Date));
Text_IO. New_Line ;

Text_I0.Put_Line (String(Employee.Emp_Name(Seif.Pays)) &
String'(1..5 => x ') &
'$' & Employee.Image(Employee.Abstract.Net_Pay(Self.Pays)));

Text_IO. New_Line ;

A-25

Text_IO.Put_Line ("Send Check to:" &
Employee.Abstract.Send_Check_To(Self.Pays));

Text_IO.New_Line;
end;

end Check;

A-26

LIST OF REFERENCES

[ANSI95] American National Standards Institute, ANSI/ISO/IEC-8652:1995, Ada 95

Reference Manual: The Language, The Standard Libraries, New York, NY,
January 1995.

[BLSM93] Standard Systems Center/XON, Base-Level System Modernization (BLSM):

A Strategy for the Future, Maxwell AFB, Gunter Annex, AL, November 1,
1993.

[B0094] G. Booch, Object-Oriented Analysis and Design with Applications, Ben-
jamin/Cummings, Redwood City, CA, 1994.

[BROD93] M. L. Brodie and M. Stonebraker, Darwin: On the Incremental Migration of

Legacy Information Systems, Technical Report TR-0222-10-92-165, GTE
Laboratories, Inc., Waltham, MA, 1993.

[CDYD91] P. Coad and E. Yourdon, Object-Oriented Analysis, 2nd edition, Yourdon
Press, Englewood Cliffs, NJ, 1991.

[CHAS90] G. Chastek, M. H. Graham, and G. Zelesnik, The SQL Ada Model Description

Language—SAMeDL, Technical Report CMU/SEI-90-TR-26, Software
Engineering Institute, Pittsburgh, PA, 1990.

[CIM94] Center for Information Management, Center for Information Management

Software Systems Reengineering Process Model, Version 2.0, draft, Defense
Information Systems Agency, Joint Interoperability Engineering Organiza-
tion, Fairfax, VA, September 1994.

[DATE75] C. J. Date, An Introduction to Database Systems, 1st edition, Addison-Wes-
ley, Reading, MA, 1975.

[DIET89] W. C. Dietrick, Jr., L. R. Nackman, and F. Gracer. "Saving a Legacy with
Objects," OOPSLA'89 Proceedings, 1989, pp. 77-83.

References - 1

[DOD92] Department of Defense, DoD 8020.1-M, Functional Management Process

for Implementing the Information Management Program of the Department
of Defense, draft, August 1992.

[DOD93] Department of Defense, DoD Directive 8120.1, Life-Cycle Management

(LCM) of Automated Information Systems (AISs), January 14, 1993.

[DOD94a] Department of Defense, MIL-STD-498 Software Development and Docu-
mentation, December 5,1994.

[DOD94b] Department of Defense, Data Item Descriptions (DIDs) for MIL-STD-498.

[DON87] J. E. D. Donaho and G. K. Davis, "Ada Embedded SQL: The Options," ACM

Ada Letters, Vol. VII, No. 3, May/June 1987.

[GRAH89] M. H. Graham, Guidelines for the Use of the SAME, Technical Report CMU/

SEI-89-TR-16, Ada 228027, Software Engineering Institute, Carnegie Mel-
lon University, PA, May 1989.

[HUTT94] A. T. F. Hutt, ed., Object Analysis and Design: Description of Methods, John
Wiley & Sons, New York, NY, 1994.

[JDA95a] B. A. Haugh, M. C. Frame, and K. Jordan, An Object-Oriented Development

Process for Department of Defense Information Systems, IDA Paper P-3142,
Institute for Defense Analyses, Alexandria, VA, July 1995.

[IDA95b] D. Smith, B. Haugh, and K. Jordan, Object-Oriented Programming Strate-

gies for Ada, IDA Paper P-3143, Institute for Defense Analyses, Alexandria,
VA, July 1995.

[L0094] C. Loosley, "A Three-Tier Solution: Achieving Data Integrity by Using
Objects and Relational DBMSs Together," Database Programming and
Design, February 1994, pp. 23-25.

[MCC90] L. S. McCoy, "Bindings and Ada," ACM Ada Letters, Vol. X, No. 8, Novem-
ber/December 1990.

[NACK86] L. R. Nackman et al., "AML/X: A Programming Language for Design and
Manufacturing," Proceedings of the Fall Joint Computer Conference,
November 1986, pp. 145-159.

[NEL91] M. Nelson, "An Object-Oriented Tower of Babel," ACM OOPS Messenger,

Vol. 2, No. 3, July 1991.

References - 2

[ORCL92] Oracle Corporation, "Pro Ada Precompiler," Programmer's Guide Version
1.4,1992.

[RUMB91] J. Rumbaugh, M. Blaha, W. Premerlani, E. Frederick, and W. Lorensen,

Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, NJ,
1991.

[SEI91] Software Engineering Institute, Rationale for SQL Ada Module Description

Language SAMEDL, Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA, 1991.

[TAYL92] D. A. Taylor, Object-Oriented Information Systems: Planning and Imple-

mentation, John Wiley & Sons, New York, NY, 1992.

[WEG90] P. Wegner, "Concepts and Paradigms of Object-Oriented Programming,"
OOPS Messenger Wol. 1/No. 1, August 1990.

[WESL80] M. A. Wesley, T. Lozano-Perez, L. I. Lieberman, M. A. Lavin, and D. Gross-
man, "A Geometrie Modeling System for Automated Mechanical Assem-
bly," IBM Journal of Research and Development, Vol. 24, No. 1, January
1980, pp. 64-74.

[WIR90] R. Wirfs-Brock, B. Wilkerson, and L. Weiner, Designing Object-Oriented
Software, Prentice-Hall, Englewood Cliffs, NJ, 1990.

[WOLF87] R. Wolfe, M. Wesley, J. Kyle Jr., F. Gracer, and W. Fitzgerald, "Solid Mod-
eling for Production Design," IBM Journal of Research and Development,
Vol. 31, No. 3, May 1987, pp. 277-295.

References - 3

GLOSSARY

Words used in the definition of a glossary term and that are defined elsewhere are
in bold.

Abstraction

AIS Program

Architecture

Automated
Information System
(AIS)

Class

Abstraction consists of focusing on the essential, inherent

aspects of an entity and ignoring its accidental properties
[RUMB91].

A directed and funded AIS effort, to include all migration sys-
tems, that is designed to provide a new or improved capability
in response to a validated need [DOD93].

The organizational structure of a system or CSCI, identifying
its components, their interfaces, and a concept of execution
among them [DOD94a].

A combination of computer hardware and computer software,
data and/or telecommunications that performs functions such as
collecting, processing, transmitting, and displaying informa-
tion. Excluded are computer resources, both hardware and soft-
ware, that are physically part of, dedicated to, or essential in
real time to the mission performance of weapon systems; used
for weapon system specialized training, simulation, diagnostic
test and maintenance, or calibration; or used for research and

development of weapon systems [DOD93]. However, as used
here, AISs include systems for C2I, C3I, and C4I, even though
they may be essential in real time to mission performance.

A class can be defined as a description of similar objects, like a
template or cookie cutter [NEL91]. The class of an object is the
definition or description of those attributes and behaviors of
interest.

Glossary-1

CRC Cards

Collaboration

Commercial-off-the-

Shelf(COTS)

Computer Hardware

Computer Program

Computer Software
Configuration Item
(CSCI)

Contract

Database

Class-Responsibility-Collaborator Cards. CRC cards are
pieces of paper divided into three areas: the class name and the

purpose of the class, the responsibilities of the class, and the

collaborators of the class. CRC cards are intended to be used to

iteratively simulate different scenarios of using the system to
get a better understanding of its nature [HUTT94, p. 192].

A request from a client to a server in fulfillment of a client's
responsibilities [HUTT94, p. 192].

Commercial items that require no unique government modifica-

tions or maintenance over the life cycle of the product to meet

the needs of the procuring agency [DOD93].

Devices capable of accepting and storing computer data, exe-

cuting a systematic sequence of operations and computer data,
or producing control outputs. Such devices can perform sub-
stantial interpretation, computation, communication, control, or
other logical functions [DOD94a]

A combination of computer instructions and data definitions
that enable computer hardware to perform computational or
control functions.

An aggregation of software that satisfies an end use function
and is designated for separate configuration management by the
acquirer. CSCIs are selected based on tradeoffs among software
function, size, host or target computers, developer, support con-
cept, plans for reuse, criticality, and interface considerations

need to be separately documented and controlled, and other fac-
tors.

The list of requests that a client class can make of a server class.
Both must fulfill the contract: the client by making only those
requests the contract specifies, and the server by responding
appropriately to those requests [HUTT94, p. 192].

A collection of related data stored in one or more computerized
files in a manner that can be accessed by users or computer
programs via a database management system [DOD94a].

Glossary-2

Database
Management
System

Encapsulation

Framework

Government-off-the-
Shelf(GOTS)

Inheritance

Information Hiding

Information System

Legacy System

Life-Cycle
Management (LCM)

An integrated set of computer programs that provide the capa-
bilities needed to establish, modify, make available, and main-
tain the integrity of a database [DOD94b].

. .. (also information hiding) consists of separating the exter-

nal aspects of an object, which are accessible to other objects,

from the internal implementation details of the object, which

are hidden from other objects [RUMB91]. The act of grouping
into a single object both data and the operation that affects that
data [WIR90].

Collection of class libraries, generics, design, scenario models,
documentation, etc., that serves as a platform to build applica-
tions.

Products for which the Government owns the data rights, that
are authorized to be transferred to other DoD or Government
customers, and that require no unique modifications or mainte-
nance over the life cycle of the product [DOD93b].

Inheritance is the sharing of attributes and operations among
classes based on a hierarchical relationship [RUMB91]. Sub-
classes of a class inherit the operations of the parent class and
may add new operations and new instance variables. Inheritance
allows us to reuse the behavior of a class in the definition of
new classes [WEG90].

Making the internal data and methods inaccessible by separat-
ing the external aspects of an object from the internal (hidden)
implementation details of the object.

See Automated Information System (AIS).

Any currently operating automated system that incorporates
obsolete computer technology, such as proprietary hardware,
closed systems, "stovepipe" design, or obsolete programming
languages or database systems.

A management process, applied throughout the life of an AIS,
that bases all programmatic decisions on the anticipated mis-

Glossary-3

Message

Migration

Migration System

Monomorphism

Object

Object-Oriented
Analysis

Object-Oriented
Decomposition

Object-Oriented
Design

sion-related and economic benefits derived over the life of the
AIS [DOD93].

Mechanism by which objects in an 00 system request services
of each other. Sometimes this is used as a synonym for opera-
tion.

The transition of support and operations of software function-
ality from a legacy system to a migration system.

An existing AIS, or a planned and approved AIS, that has been

officially designated to support standard processes for a func-

tional activity applicable DoD-wide or DoD Component-wide

[DOD93]. Ordinarily, an AIS that has been designated to
assume the functionality of a legacy AIS.

A concept in type theory, according to which a name (such as a
variable declaration) may only denote objects of the same
class.

A combination of state and a set of methods that explicitly

embodies an abstraction characterized by the behavior of rele-
vant requests. An object is an instance of an implementation

and an interface. An object models a real-world entity (such as a
person, place, thing, or concept), and it is implemented as a
computational entity that encapsulates state and operations
(internally implemented as data and methods) and responds to
requestor services.

A method of analysis in which requirements are examined from
the perspective of the classes and objects found in the vocabu-
lary of the problem domain [B0094].

The process of breaking a system into parts, each of which rep-
resents some class or object from the problem domain
[B0094].

A method of design encompassing the process of 00 decompo-
sition and a notation for depicting both logical and physical as
well as static and dynamic models of the system under design

Glossary-4

Object-Oriented
Programming

Object-Oriented
Technology (OOT)

Object Request
Broker (ORB)

Operation

Polymorphism

Reengineering

[B0094].

A method of implementation in which programs are organized
as cooperative collections of objects, each of which represents
an instance of some class, and whose classes are members of a

hierarchy of classes united via inheritance relationships. In
such programs, classes are generally viewed as static, whereas
objects typically have a much more dynamic nature, which is

encouraged by the existence of dynamic binding and polymor-
phism [B0094].

OOT consists of a set of methodologies and tools for develop-
ing and maintaining software systems using software objects
composed of encapsulated data and operations as the central
paradigm.

Program that provides a location and implementation
independent mechanism for passing a message from one object
to another.

A specific behavior that an object exhibits, implemented as a
procedure contained within the object.

The same operation may behave differently on different
classes [RUMB91].

The process of examining and altering an existing system to
reconstitute it in a new form. May include reverse engineering
(analyzing a system and producing a representation at a higher
level of abstraction, such as design from code), restructuring
(transforming a system from one representation to another at
the same level of abstraction), redocumentation (analyzing a
system and producing user or support documentation), forward
engineering (using software products derived from an existing
system, together with new requirements, to produce a new sys-
tem), retargeting (transforming a system to install it on a differ-

ent target system), and translation (transforming source code
from one language to another or from one version of a language
to another) [DOD94a].

Glossary-5

Requirement

Responsibility

Service

Software

Software
Development

Software
Engineering

Software
Engineering
Environment

Software System

(1) characteristic that a system or CSCI must possess in order

to be acceptable to the acquirer. (2) A mandatory statement in
this standard or another portion of the contract [DOD94a].

A contract that a class must support, intended to convey a

sense of the purpose of the class and its place in the system
[HUTT94, p. 192].

A service is a specific behavior that an object is responsible for
exhibiting [CDYD91].

Computer programs and computer databases. Note:

Although some definitions of software includes documentation,

MIL-STD-498 limits the scope of this term to computer pro-

grams and computer databases in accordance with Defense Fed-
eral Acquisition Regulation Supplement 227.401 [DOD94a].

A set of activities that results in software products. Software
development may include new development, modification,
reuse, reengineering, or any other activities that result in soft-
ware products [DOD94a].

In general usage, a synonym for software development. As

used in this standard [MIL-STD-498], a subset of software
development consisting of all activities except qualification test-
ing. The standard makes this distinction for the sole purpose of
giving separate names to the software engineering and soft-
ware test environments [DOD94a].

The facilities, hardware, software, firmware, procedures, and
documentation needed to perform software engineering. Ele-

ments may include but are not limited to computer-assisted
software engineering (CASE) tools, compilers, assemblers,
linkers, loaders, operating systems, debuggers, simulators, emu-
lators, documentation tools, and database management sys-
tems.

A system consisting solely of software and possibly the com-
puter equipment on which the software operates [DOD94a].

Glossary-6

Weapon System Items that can be used directly by the Armed Forces to carry out

combat missions and that cost more than 100,000 dollars or for

which the eventual total procurement cost is more than 10 mil-

lion dollars. That term does not include commercial items sold
in substantial quantities to the general public (Section 2403 of
10 U.S.C., reference (bb)) [DOD93].

Glossary-7

LIST OF ACRONYMS

ADAR

AIS

AP

API

CICS

CORBA

DBMS

DBS

DEC

DISA

DoD

GDP

GUI

I/O

IDA

OO

OOT

SAMeDL

TGMS

Ada Decimal Arithmetic and Representatives

Automated Information Systems

Application Program

Application Programming Interface

Customer Information Control System

Common Object Request Broker Architecture

Database Management Systems

Database Server

Digital Equipment Corporation

Defense Information Systems Agency

Department of Defense

Geometric Design Processor

Graphical User Interface

Input/Output

Institute for Defense Analyses

Object-Oriented

Object-Oriented Technology

SQL Ada Module Description Language

Tiered Geometric Modeling SystemXs

Acronyms - 1

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 1995
3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Legacy System Wrapping for Department of Defense Information
System Modernization

5. FUNDING NUMBERS

DASW01-94-C-0054

Task Order T-S5-1266
6. AUTHOR(S)

Kathleen A. Jordan, Brian A. Haugh, Asghar I. Noor, D. Douglas
Smith

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Defense Analyses (IDA)
1801 N. Beauregard St.
Alexandria, VA 22311-1772

8. PERFORMING ORGANIZATION REPORT
NUMBER

IDA Paper P-3144

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Information Systems Agency
Center for Computer Systems Engineering
5600 Columbia Pike
Falls Church, VA 22041-2717

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

U. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, unlimited distribution: January 10,
1997.

12b. DISTRIBUTION CODE

2A

13. ABSTRACT (Maximum 200 words)

This document explains the activities, benefits, problems, and issues in using the object-oriented
technique of "software wrapping" to support the migration from legacy information systems to
modernized systems. DoD legacy systems have obsolete technologies such as closed systems,
"stovepipe" design, and outmoded programming languages or database systems. Software wrapping
is used to create an interface around data, individual modules, subsystems, or whole systems,
allowing access to the entities in the original system. Examples of wrapping implementation and
guidelines, using the Ada programming language (Ada 83), are given for functions or subprograms
originally written in the Cobol, C, Fortran, and Assembler. In addition, software wrapping is analyzed
in the broader context of alternative migration strategies for a whole system. The unite-and-conquer
strategy appears to be better suited to software wrapping, using a unified object model throughout
progressive stages of migration, as compared to the other three strategies (divide-and-conquer,
divide-and-wrap, one-short-rebuild).

14. SUBJECT TERMS
Object-oriented technology, software wrapping, legacy system, information
system, Ada, reengineering, database management system

15. NUMBER OF PAGES
146

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

